Engineering Tripos Part IA Paper 2 – MATERIALS HANDOUT 1	First Year
 Introduction to Engineering Materials Classes of Engineering Materials Materials in Design Aims and Content of IA Materials course Reference texts, software, online resources 	

January 2014

Introduction to Engineering Materials 1. 1.1 Classes of Engineering Materials Engineering materials can be classified into five generic Metals groups. These are based Cu-alloys Ni-alloys primarily on similarities in PE, PP, PC PA (Nylon Alum Polymers microstructure and Ceramics elastomers properties GFRP CFRP glasses Composites oda-gla Pyrex Composites can (in principle) be made by combining materials from any groups, Natural giving them characteristics Foams materials of both components - a rich source of "new" materials.

"Structural" Materials:

H.R. Shercliff hrs@eng.cam.ac.uk

Part I Materials principally covers structural materials:

- materials used to resist mechanical loading
 - sometimes also thermal and electrical loads
- not just "civil engineering" materials

Current drivers for development in structural materials:

- transport: lightweighting vehicles, engine efficiency
- energy: wind turbines, nuclear power
- life sciences: biomaterials implants, artificial bone; medical devices
- sustainability: reduction in waste and packaging, greater recycling
- sports: high performance products (F1, racing yachts, athletics)

Engineering failures - a cautionary note:

Materials are not just enabling technologies - they are often at the centre of major disasters:

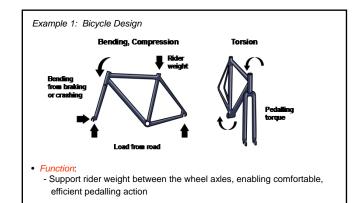
Liberty ships, Comet aircraft, Concorde, Columbia shuttle, Hatfield rail crash, oil rig collapses

- "Functional" materials:
- Materials engineering also includes *functional materials* (i.e. optical, semiconductor, electronic, magnetic):
- Si-based chip technology, display technology, optical fibres, thin films, MEMS (micro-electro-mechanical-systems), nanotechnology

NB: design with "functional" materials overlaps with "structural":

- · device density on a chip is constrained by the removal of heat
- · speed of a hard disk is limited by inertia, vibration etc.
- overhead power lines are limited by strength and thermal expansion
- superconducting magnets produce fields which can break the magnet

And, the fundamental physics of *materials processing* (studied in IB) apply across structural and functional materials:


- solidification, heat flow, diffusion, microstructure control, etc.

1.2 Materials in Design

Product Design and Material Selection

Designing a product or component involves specification of the

- design requirements, organised systematically into:
- Function (what the component does)
- Constraints (limits on geometry and performance)
- Objectives (design-optimising requirements)
- Free variables (parameters which can be adjusted by designer)

Constraints

- Geometric limits on span between axles, height and width
- Specified stiffness: deflection under load
- Resist failure: remains elastic no permanent deformation, or fracture
- Resist corrosion from water
- Style, ability to decorate, add accessories, ease of maintenance
- Weight or cost (upper limit, depending on user)

Objectives:

Minimise cost (standard bikes) or weight (performance bikes)

Free variables:

- Cross-sectional shape and dimensions of structural members in frame - Materials and manufacturing processes

Example 2: Overhead Power Cables

Function

clearance

ice loads

- Cost/km

- Operating temperature

(due to ohmic heating)

Carry electrical current at high voltage,

above ground, and over long distances

- Span and dip between pylons, ground

- Must not fail under self-weight, wind and

- Upper limits in cable dimensions and weight

(for transport, installation, connections)

Objectives

- Maximum power transmission

Free variables: - Cable size, cross-sectional winding pattern - Materials and manufacturing processes

Design Requirements - Overview

- Function (what the component does): - support loads on supports, store mechanical energy
 - conduct heat or electricity efficiently, prevent heat loss Constraints (limits on geometry and performance):
 - allowable dimensions, shape restrictions
 - allowable deflection, must not fail under load
 - NB: Not all - resist corrosion or oxidation in service environment "technical" -

some aesthetic

and subjective

requirements

- limits on weight or cost
- ergonomics, aesthetics, surface finish
- ease of manufacture and recyclability
- Objectives (design-optimising requirements): - minimum weight or cost or environmental impact - maximum energy storage (per unit volume or mass)
- Free variables (parameters which can be adjusted by designer):
 - some dimensions
 - material(s) selected
 - manufacturing route

From Design Requirements to Material Selection

A material's ability to meet multiple design requirements depends on:

- (1) material properties: response to mechanical, electrical and thermal loads, i.e. mostly numerical data.
- (2) secondary constraints: imposed by manufacturing, environmental impact and cost, i.e. qualitative/quantitative information/expertise.

Material selection in design therefore involves translation of design requirements into a target material profile.

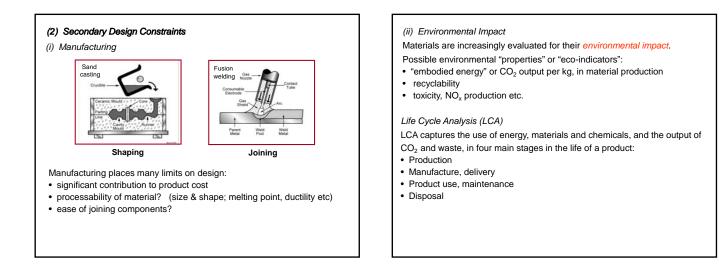
(1) Design-Limiting Material Properties

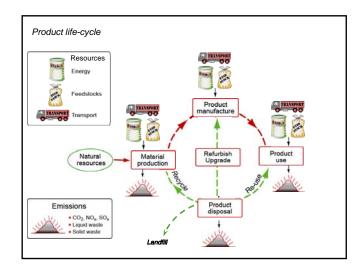
Bicycle Frame:

Design requirement		Properties	
Stiffness	\longrightarrow	Young's modulus	
Avoid failure	\longrightarrow	Strength, fracture toughness	
Weight	\longrightarrow	Density	
Cost	\longrightarrow	Material price/kg	

Overhead power cables:

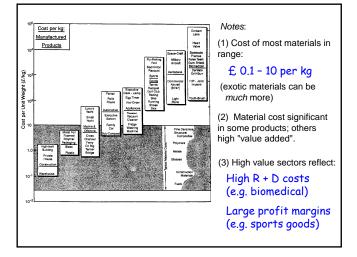
Design requirement	Properties	
Avoid failure →	Density, thermal expansion Strength Electrical resistivity	

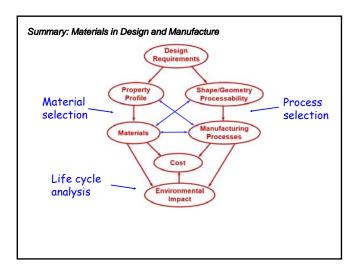

Summary: Design-Limiting Material Properties						
General	Mechanical	Thermal	Electrical	Resistance to service environment		
Density Price/kg	Young's modulus Strength Fracture toughness Ductility	Conductivity Expansion Maximum operating temperature	Electrical resistivity	Wear Corrosion		


Property-based Material Selection - the technical challenges

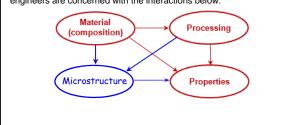
- multi-physics: structures, mechanics, thermofluids, electrical
- 1000s of materials to choose from

objectives and constraints often in conflict: an optimisation problem


Design analysis (later) will show how to identify the right combinations of properties for a given problem.



(iii) Product and Material Cost


- Cost is (almost) always important, and includes:
- raw material costs
- manufacturing costs (capital, energy, manpower etc)
- · prior research and development

Notes:

- · selection of material and of process route are closely coupled
- material and processing contribute to cost and environmental impact
- material processing achieves two *simultaneous outcomes*:
 shaping components and assembling them into products
 manipulating the properties to give the required performance in service
- properties are controlled by material *microstructure* so materials engineers are concerned with the interactions below:

1.3 Aims and Content of IA Materials Course

- To introduce the classes of structural engineering materials (metals, ceramics, polymers, composites);
- To introduce material properties relevant to engineering applications (stiffness, strength, toughness, corrosion resistance etc.);
- To relate material properties to atomic, molecular and microstructural features;
- To understand failure processes and mechanisms, and the application of mathematical models to describe material behaviour;
- To develop a systematic approach to optimal material selection in design, including manufacturing process and environmental impact.

Lent Term (12L) Dr H.R. Shercliff

- 1. Material Selection in Design/Elastic Properties of Materials (6L)
- 2. Plastic Properties of Materials/Material Selection (continued) (4L)
- 3. Process Selection, Environmental Impact of Materials (2L)

Easter Term (8L) Dr A.E. Markaki/Dr A. Kabla

- 4. Fracture and Fatigue (5L)
- 5. Influence of service environment (corrosion, friction and wear) (3L)

Lent Term Examples Papers

- 1. "Teach Yourself Microstructure" (week 1)
- 2-4. Lecture material (weeks 1, 4, 6)

1.4 Reference texts, software, online resources

- Ashby M.F., Shercliff H.R. and Cebon D., Materials: Engineering, Science, Processing and Design, Butterworth. (1st, 2nd or 3rd edition).
- 2. Callister W.D., Materials Science & Engineering: An Introduction, Wiley.
- 3. Ashby M.F. and Jones D.R.H., Engineering Materials 1 + 2, Butterworth.

The Materials Data Book is a key element of the course.

The course uses the Cambridge Engineering Selector (CES) software – available for free download to CUED students (details later).

Online Resources

- via Teaching Webpages:
 - First Year > Syllabuses and Course Notes > Paper 2 Materials
- Filled handouts
- Audio-video extracts: key lecture topics and examples paper problems Audio-video CES Tutorials