Engineering Tripos Part IA

Paper 2 – MATERIALS

HANDOUT 2

2. Elastic Properties of Materials

- 2.1 Elastic Stiffness in Design
- 2.2 Stress, Strain, Hooke's Law and Elastic Moduli
- 2.3 Analysis of Stress and Strain
- 2.4 Measurement of Young's Modulus
- 2.5 Data for Young's Modulus Material Property Charts

3. Microstructure of Engineering Materials I

- 3.1 Introduction: Length Scales in Materials Engineering
- 3.2 Crystalline Materials: Metals, Ceramics
- 3.3 Atomic Basis of Elasticity of Metals and Ceramics
- 3.4 Polymer Elasticity
- 3.5 Manipulating Properties I: Foams, Composite Materials

Section 2 covers Ex. Paper 2, Q.1-6; Section 3: Q.7-10.

H.R. Shercliff hrs@eng.cam.ac.uk

January 2014

2. Elastic Properties of Materials

2.1 Elastic Stiffness in Design

Many engineering components need to behave *elastically* under load, i.e.

Examples:

- "structural" applications: bridges, buildings, vehicles, bicycles, furniture, machines
- "functional" applications: precision instruments, hard disk drives

The stiffness of a component or structure is:

Intrinsic *material* stiffness measured by Young's modulus, *E* (defined below). Effects of size, shape, loading: use results from IA Structures.

2.2 Stress and Strain

2.2.1 Uniaxial Tension and Compression

<u>Stress</u>

This is a *normal* or *direct stress* (i.e. force *perpendicular* to loaded area). Stress is measured in *Pascals* (usually MPa: $1 \text{ MPa} = 10^6 \text{ N/m}^2 = 1 \text{ N/mm}^2$).

<u>Strain</u>

This is a *normal* or *direct strain* (i.e. extension *parallel* to original length).

Strain is a ratio of lengths, so it is *dimensionless* (no units).

For most materials elastic strains are small (< 0.1%) – rubber is an exception.

Poisson's ratio

In uniaxial tension:

- the material gets longer and thinner
- the lateral contraction and the tensile extension are proportional
- the ratio is a material property: *Poisson's ratio*, v (Greek "*nu*", not "v"):

ν =

(note minus sign, so v is positive)

Lateral strain is *not* due to volume conservation, but reflects the way atomic bonds deform under load. Typical values of Poisson's ratio, v:

crystalline materials (metals, ceramics) porous solids (foam, cork) elastomeric polymers (rubber)

When does Poisson's ratio matter?

- not important in most design with *uniaxial loads* (e.g. members in a truss: fractional change in area)
- important when the *stress state is 2D* or *3D* (e.g. constrained expansion examples later)
- important in vibration of plates
 (e.g. affects frequencies of vibration modes)
- important in *large strain bending,* giving *anticlastic curvature*:

Young's Modulus

Most engineering materials are *linear elastic*: under uniaxial load, a sample of constant cross-section extends in proportion to the load (Hooke's Law).

By converting load to stress, and extension to strain:

- the response is made independent of geometry;
- the slope is then a material property, Young's modulus, E.

For uniaxial tension (or compression):

Young's modulus, E =

2.2.2 Stress and Strain in 3D

Hooke's Law in 3D

Some engineering components are loaded uniaxially, e.g. cables, struts; but often the stresses are *multiaxial*, e.g. beams, arches, pressure vessels.

Strain is always 3D (due to Poisson's ratio).

Consider a unit cube of material (representing any volume element in a uniformly loaded body), under a general set of normal stresses (σ_1 , σ_2 , σ_3).

To find resulting strains: apply each stress in turn, and use *superposition*.

e.g. load in 1-direction only:

Repeat for each stress in turn, and sum the strains:

$$\varepsilon_{1} = \frac{1}{E} \left(\sigma_{1} - \nu \sigma_{2} - \nu \sigma_{3} \right)$$

$$\varepsilon_{2} = \frac{1}{E} \left(-\nu \sigma_{1} + \sigma_{2} - \nu \sigma_{3} \right)$$

$$\varepsilon_{3} = \frac{1}{E} \left(-\nu \sigma_{1} - \nu \sigma_{2} + \sigma_{3} \right)$$

General form of
Hooke's Law in 3D

Dilatation

When materials strain elastically, their volume changes.

Volumetric strain is called the *dilatation*, Δ =

Consider the unit cube again, for a general strain state (ϵ_1 , ϵ_2 , ϵ_3):

Initial volume: $V_0 = 1$ Final cube dimensions: $(1+\varepsilon_1, 1+\varepsilon_2, 1+\varepsilon_3)$ Hence final volume:

Hence for small strains ($\epsilon <<1$), dilatation is:

Bulk Modulus

A state of *hydrostatic stress* is when all three normal stresses are equal, e.g. under uniform external pressure *p*: $\sigma_1 = \sigma_2 = \sigma_3 = -p$

This loading occurs in ceramic manufacturing, when powders are compacted under large pressures ("hot isostatic pressing, or HIPing").

From Hooke's law in 3D (noting the symmetry):

$$\varepsilon_1 = \varepsilon_2 = \varepsilon_3 = \frac{1}{E} \left(-p + v p + v p \right) = -\frac{p}{E} (1 - 2v)$$

Hence the dilatation is:

Define the *bulk modulus, K* = (units: GPa)

Comparison with Young's modulus, E:

crystalline materials (metals, ceramics), $v \approx 0.3$:

rubber, $v \approx 0.5$:

2.2.3 Shear Stress and Strain

Shear Stress

Normal stress (as above):

force per unit area carried *perpendicular* to a plane within the material.

Shear stress:

force per unit area carried *parallel* to a plane within the material.

For equilibrium, the shaded surface must carry components of force both normal and parallel to the surface:

Notes:

- usual symbol for shear stress: τ (Greek "tau");
- forces may be related by resolving, but this is NOT true for the stresses (as stresses on the inclined plane act on a different area to the axial stress);
- there is a simple trigonometric relationship between the stresses (allowing for the effect of the angle of the plane on both force components and plane area – further analysis in IB Structures).

Key points:

- the description of a stress state depends on the orientation of the surfaces "cut" through the solid;
- shear stresses arise in almost every loading situation, but may be off-axis from the obvious orientations chosen.

Examples of shear forces and stresses in structural components:

- arches, beams in bending, shafts in torsion

Shear strain

Shear stresses distort the *shape* of a volume element, rather than changing its axial dimensions.

Shear strain:

(i.e. for small strains, $\tan \gamma = \gamma$)

As for stress, the description of the strain state depends on the axes chosen. Consider the 2D element loaded as shown: the strains will be purely normal.

Imagine the lines joining the mid-points of the original square, before and after the deformation:

Simple analysis relates:

- the pure shear stress $\,\tau\,$ to the biaxial tension/compression stress $\,\sigma\,$
- the shear strain $\,\gamma\,$ to the normal strains, $\epsilon_{1}\, \text{and}\, \epsilon_{2}\,$

Shear Modulus

In some loading situations, the stiffness in shear is relevant (e.g. twisting of a shaft loaded in torsion). The *shear modulus* G is defined as:

Using the normal–shear relationships between stress and strain (for pure shear) and Hooke's Law, the shear modulus G and Young's modulus E are related by:

Typical value for crystalline materials ($v \approx 0.33$):

2.2.4 Summary: Relationships between elastic constants

(i) Four elastic constants have been defined: *E*, *v*, *K* and *G*.

The relationships between them are:

$$K = \frac{E}{3(1-2\nu)}$$
 and $G = \frac{E}{2(1+\nu)}$

- (ii) 3D elastic analysis assumes that the material is *isotropic* (i.e. same properties in all directions):
 - OK for crystalline materials and some polymers;
 - not for aligned materials: drawn polymers, wood or fibre composites.
- (iii) For isotropic materials there are only *two independent elastic constants* given any two, the others can be found.

2.3 Analysis of Stress and Strain

Analysis of stress and strain is fundamental to Structures, Materials and Mechanical Design.

The Part I Structures courses cover many in depth:

- truss deflection and failure, pressure vessels, beam stresses and deflections, torsion of shafts

These solutions are used in Materials for *material selection* problems.

Two additional situations are addressed here:

- constrained deformation
- thermal stress and strain.

2.3.1 Constrained Deformation

Under uniaxial tension (or compression) elastic materials strain laterally (Poisson's ratio).

What if the material is constrained: i.e. lateral strain is prevented?

Example: constrained compression of a cube

Consider a cube of material fitted into a square-section slot in a rigid plate, and loaded with a compressive stress σ_1 .

2-direction: parallel to the slot 3-direction: across the slot

Strain in the 3-direction is zero:

The material tries to expand in the 3-direction – a *compressive stress* σ_3 is induced to prevent this. From Hooke's Law in 3D:

Hence:

Strain in the 1-direction (due to both stresses) is given by:

Hence the "effective modulus", $\frac{\sigma_1}{\varepsilon_1}$ =

Key points:

- constraint induces a *transverse stress*: nominally uniaxial loads generate biaxial (or triaxial) stresses in the material;
- the apparent material stiffness is increased, by a factor $1/(1 v^2)$.

How much is this factor?

- crystalline materials ($v \approx 0.33$):
- rubber ($v \approx 0.5$):

The effect is even more marked in rubber if there is constraint in *both* transverse directions (since rubber is *incompressible*).

e.g. shoe soles:

- thin layers of rubber loaded in compression
- constrained (by friction) from expanding sideways
- solid rubber soles: feel very stiff (unexpected when rubber is chosen for its low Young's modulus, to provide cushioning!)

How are shoe soles designed to give a springy response (Ex. Paper 2)?

2.3.2 Thermal Stress and Strain

All materials expand as temperature rises. To a good approximation, the strain caused by a temperature change, ΔT , is proportional to ΔT .

Strain/unit temperature change = *thermal expansion coefficient*, α (units: K⁻¹).

Typical values:		Material	lpha imes 10 ⁻⁶ (K ⁻¹)		
	Ceramic	Alumina	9.0		
	Metals Steels		12		
		Aluminium Alloy	22		
		"Invar" (Ni-Fe alloy)	1.0		
	Polymer	Nylon	145		

Thermal expansion is important in design when:

- constrained expansion or contraction (inducing thermal stresses);
- *temperature gradients* exist across a product, again inducing thermal stresses (e.g. heat treatment of metals);
- *dissimilar materials* are joined and then subjected to temperature change, giving *differential thermal expansion/contraction*, and induced stresses.

Example 1: railway track

Estimate the stress induced in a continuous steel railway track subjected to a 40°C temperature rise above an initial (stress-free) temperature.

Thermal strain $\varepsilon_{\text{thermal}} =$

Total strain = 0, hence: $\varepsilon_{elastic} = - \varepsilon_{thermal}$

Induced elastic stress:

Values for steel: $\alpha = 12 \times 10^{-6} \text{ K}^{-1}$, E = 210 GPa

For $\Delta T = 40$ K:

In compression this stress may cause *buckling*. Hence must leave expansion gaps, or install under tension.

Example 2: constrained surface layers

Many coating technologies (for *wear or corrosion resistance*) deposit a thin surface layer of a different material on a component at high temperature.

Consider a thin film on a component of thickness >> film thickness, x , and examine a length ℓ_o (at high temperature) away from the edges of the specimen:

On cooling, *differential contraction* of substrate and surface layer can induce *thermal stresses*.

First imagine the layer is *not* attached to the substrate, and cool component by a temperature drop ΔT :

For $\alpha_1 > \alpha_2$, surface layer is restrained from contracting by the substrate and goes into *tension*, balanced by *compression* in the substrate.

As the surface layer is thin compared to the substrate:

- compressive stress negligible (large area to provide balancing force);
- final length = that of substrate =

Superpose tensile stress in surface layer, to increase its length from its contracted length, to match that of the substrate:

- change in length:
- strain in surface layer:

Since $(\alpha_1 \Delta T) \ll 1$, strain =

Notes:

- if $\alpha_1 < \alpha_2$, analysis still valid, but surface layer goes into *compression*.
- surface stress is *biaxial* (and equal in all directions): use 3D Hooke's Law to find biaxial stress in surface layer that produces this strain (Ex. Paper 2).

- key result is:

2.4 Measurement of Young's Modulus

Wide range of methods for measuring Young's modulus:

- tensile testing (Experiment 4)
- bending stiffness of a beam
- natural frequency of vibration (beams, plates IB Experiment M1)
- speed of sound in the material, $\sqrt{E/\rho}$

(Notes below on practicalities, accuracy etc.)

Tensile Testing:

Uniaxial tension applied to sample of standard, uniform cross-section:

e.g. Hounsfield tensometer (Materials Lab, Experiment 4)

gauge length $\ell_{\rm o}$

Convert load vs. extension graph to stress vs. strain: gradient *E*.

Measure extension of gauge length, from machine extension, or directly from the sample using a *strain gauge*.

Accuracy:

- elastic extensions small (< 0.1%), difficult to measure precisely
- measurement from machine must allow for flexure of machine
 - strain gauge much higher precision

Bending Stiffness of a Beam:

Beam of uniform cross-section loaded in 3-point bending:

Stiffness (F/ δ) related to *E* via beam theory (IA Structures).

From Structures Databook:
$$\delta = \frac{FL^3}{48EI}$$

EI is the *flexural rigidity*; *I* is the *second moment of area*, and captures the effect of cross-section size and shape:

e.g. for a square section of side-length D: $I = D^4/12$

Hence for 3-point bend of square section beam: $E = \frac{(F / \delta)L^3}{4D^4}$

Accuracy:

- bending gives much more deflection for given load than tension
- E sensitive to L and D: requires accurate measurement of dimensions

Natural frequency of vibration (beams and plates)

Natural frequency of vibration in bending depends on flexural rigidity, EI

Beam supported at nodal points and set vibrating:

Plate supported on soft mounts over a loudspeaker emitting note of adjustable frequency.

"Chladni patterns" – nodal lines (revealed using tea leaves)

(Note: this method is also a good way to measure *Poisson's ratio*)

For video demo, see: http://www-materials.eng.cam.ac.uk/HRSMaterials/chladni_demo.html

Accuracy:

- measuring frequency more accurate than deflection
- calculated E still sensitive to beam/plate dimensions (through I and L)

Speed of Sound in the material:

The speed of sound v_t in a solid depends on stiffness of inter-atomic bonds. Young's modulus *E* also depends on bond stiffness (see later notes).

Hence measure *E* by measuring v_t :

- strike a bar of material on one end

- time the longitudinal wave reflected from far end of the bar

Dimensional analysis: $E = v_t^2 \rho$, where ρ is the density

i.e. speed of sound $v_t = \sqrt{E/\rho}$

e.g. for steel: E = 210 GPa, $\rho = 7800 \text{ kg/m}^3$

$$v_t = (E/\rho)^{1/2} = (210 \times 10^9 / 7800)^{1/2} = 5188 \text{ m/s}$$

Accuracy:

- for 1m long bar, time between pulses $\approx 1/5000 = 0.2$ ms
- accuracy depends on precise time measurement, which is relatively easy with piezoelectric transducers

2.5 Data for Young's Modulus – Material Property Charts

Data sources for Young's Modulus (and other properties):

- Materials Databook
- Cambridge Engineering Selector (CES) databases

Material Property Charts

- graphs with two properties as axes
- facilitates material comparison and making trade-offs in design

Material Property Chart: Young's Modulus vs. Density (Materials Databook)

Notes on Property Charts:

- log scales: properties span many orders of magnitude
- ranges of the two properties define a "bubble" on the chart (usually drawn as an ellipse)
- materials cluster by class, enclosed by an envelope

Notes on Young's modulus:

- Young's modulus for solid materials spans over 6 orders of magnitude
- metals, ceramics and composites are stiff materials
- polymers, natural materials and foams are generally much less stiff, and cover a very wide range of stiffness

Notes on **Density**.

- density for solid materials spans a factor of 20
- polymer foams & porous natural materials (e.g. wood) extend the range to much lower values
- most ceramics, and composites, have similar densities to the "light metals" (Mg, Al, Ti); steels and other metals have high densities
- only porous materials and the lightest polymers float in water (ρ = 1 Mg/m³)

Physical observations:

- materials in a given class (metals, ceramics etc) cluster together (indicating similarity in underlying physical basis of the properties)
- general trend for ceramics and metals: Young's modulus increases with density (though with exceptions, such as Pb alloys)
- individual classes of metals (e.g. steels, Ti alloys etc) have well-defined values of Young' modulus and density (small bubbles)
- polymers cover a wide range of Young's modulus, but their densities are all around 1-2 Mg/m³; individual polymers are omitted for clarity

3. Microstructure of Engineering Materials I

- 3.1 Introduction: Length Scales in Materials Engineering
- 3.2 Crystalline Materials: Metals, Ceramics
- 3.3 Atomic Basis of Elasticity of Metals and Ceramics
- 3.4 Polymer Elasticity
- 3.5 Manipulating Properties I: Foams, Composite Materials

Section 3 covers Examples Paper 2, Q.7-10.

3. Microstructure of Engineering Materials I

3.1 Introduction: Length-scales in engineering materials

Microstructure for Engineers

Engineering spans length scales from kilometre-scale structures to electronic devices and micro-electro-mechanical-systems (MEMS) at fractions of 1 mm.

Atoms: typical radius = 0.1 - 0.2 nm

Microstructure: from atom-scale defects, compounds of atoms, "grains" (crystal regions), to "engineering" defects such as cracks, porosity and surface roughness (at μ m – mm scale).

"Teach Yourself Microstructure"

Topics covered (and assumed in lectures):

- primary and secondary bonding
- crystal packing in metals and ceramics, and atomic basis of density
- polymer microstructure

Why do engineers need to know about microstructure?

- macroscopic engineering-scale *properties* (mechanical, thermal, electrical...) are governed directly by the *internal microstructure;*
- different features at different *length-scales* determine each property.

Understanding microstructure enables materials engineers and scientists to:

- recognise the physical origin and inherent limits on properties,
 i.e. to target best openings for developing new or improved materials;
- know what can be manipulated (e.g. by changes in composition, or in processing) and what cannot;
- avoid key failure mechanisms in design: yield, fracture, corrosion.

3.2 Crystalline Materials: Metals, Ceramics

In crystalline materials, atoms pack in a regular repeating lattice structure.

Metals are sometimes used in a *pure form* (e.g. Al foil, Cu conductors) but most commonly as *alloys* (mixed with other metal and non-metal elements):

- Steels and cast irons (Fe-C, plus Mn, Ni, Cr....)
- Al alloys (Al+Mg, plus Cu, Zn, Si....)
- Cu alloys (Cu-Sn: bronze; Cu-Zn: brass)

Ceramics are compounds of metals or silicon with non-metals (O, C or N):

- Technical ceramics: alumina, silicon carbide, silicon nitride
- Glasses (based on silica)
- Porous ceramics: brick, concrete, pottery

Properties and applications of common metals and alloys, and ceramics, are tabulated in the *Materials Databook* (and in the *CES software*).

3.3 Atomic Basis of Elasticity of Metals and Ceramics

Elastic Response of Metals and Ceramics

Primary bonds behave as stiff elastic springs, with force–displacement response of the form:

Gradient of the F- r response (at the equilibrium spacing r_o) is the *bond stiffness* S_o :

$$S_o = \left(\frac{dF}{dr}\right)_{r=r_o}$$

For a *small* displacement from equilibrium, *u*:

Restoring force per atom =

and the strain =

Number of bonds/unit area is fixed (by the lattice geometry) *Area per bond* is of order r_0^2

Hence the stress \approx

i.e. Young's modulus, E = stress/strain \approx

Key points:

- Young's modulus of a component directly reflects the bond stiffness, on a length scale 10¹⁰ times smaller!
- atomic F-u response is linear, giving linear elasticity at the macro scale;
- primary bond stiffness and atomic packing are physically prescribed;
- little scope for manipulating Young's modulus via the crystal structure;
- recall that the same is true for *density* (*Teach yourself microstructure*).

Properties of Alloys

Alloys are mixtures of elements, forming solid solutions and compounds.

<u>Density</u>

From the hard sphere model, solid solutions and compounds will form densities between those of the pure elements.

Example densities (Mg/m³):

Young's Modulus

Solid solutions contain a mixture of different bond stiffnesses (A-A, A-B, B-B): \Rightarrow Young's modulus of A-B solutions somewhere between pure A and pure B.

Compounds have *stiffer* bonds, and higher modulus – the stronger chemical bond is a major reason why the compound forms.

Example: Copper-nickel alloys form solid solutions of Cu and Ni across *all* compositions (used for conductors, electroplating, coinage).

						% Ni	ckel		
			0)	20	40	60	80	100
			100 l						
Pure Ni	190		.20						
Cu – 70% Ni	158	, buno,	120	•					
Cu – 30% Ni	148	s Modu	140	-	•	•			
Cu – 10% Ni	125	ulus, E	160	-			•	•	
Pure Cu	122	(GPa)	180	-					
Alloy	E (GPa)								+
		_	200 r						

Data for E across the composition range (from CES):

Summary: key points

- Young's modulus and density of crystalline materials are governed directly by atomic packing and atomic bonding;
- For alloys, both properties are well-defined by the composition, with no scope for change by processing.

A short aside: amorphous metals

Metals crystallise easily – some can be forced to retain an *amorphous structure* if cooled very fast.

Recently, *bulk amorphous metals* have been produced which solidify at conventional rates, using very unusual compositions:

e.g. Be-Zr-Ti-Cu-Ni-Y alloy!

These alloys contain atoms of *widely different sizes*, making regular crystal packing difficult.

Amorphous metals have unusual properties:

- mechanically and magnetically hard
- very low damping (little energy lost in elastic collisions).

3.4 Polymer Elasticity

Classes of polymers

Thermoplastics: polyethylene (low & high density: LDPE, HDPE), polyvinylchloride (PVC), polypropylene (PP), polystyrene (PS)

Trade-names commonly used: nylon, acrylic, teflon, perspex...

Elastomers: rubbers, neoprene

Thermosets: epoxies, phenolics, polyurethane

Polymer nomenclature, properties and typical applications are summarised in the Materials Databook and the CES software.

Polymer "Alloys"

Polymer molecular chemistries are well-defined, and different polymers don't mix as freely as metallic atoms.

There are two mechanisms for "alloying" polymers:

Copolymers: more than one monomer polymerised together – only a few combinations will do this, e.g. acrylonitrile, butadiene, styrene (ABS).

Polymer blends: molecular-scale mixtures of two polymer chains, without cross-linking.

Glass transition, melting and decomposition temperatures

In *crystalline materials and glasses*, the breaking of *primary* bonds by thermal energy gives a well-defined *melting point*, T_m .

In *polymers*, the weaker *secondary* bonds are overcome by thermal energy at a lower temperature: the *glass transition temperature*, T_{a} .

Typical values for T _a
(see Materials Databook):

Polymer	T _g (°C)			
Acrylic (PMMA)	85 - 165			
Polystyrene (PS)	74 - 110			
Polyethylene (PE)	- 25 15			
Natural Rubber	-7863			

Compare with melting points T_m of primary bonded crystalline materials:

- metallic bond:
- ionic bond:
- covalent bond:

Above T_{α} , the behaviour differs between the polymer classes:

- Amorphous thermoplastics: melt to a viscous liquid (entangled molecules slide over one another).
- Semi-crystalline thermoplastics: amorphous regions melt, crystalline regions survive to a higher melting point, T_m (typically T_m ≈ 1.5 T_g, in K), above which a viscous liquid forms.
- *Elastomers* and *thermosets*: secondary bonds melt at T_g but cross-links do not on heating the polymer does not melt, but decomposes or burns.

Consequences for processing and environmental impact:

Thermoplastics:

Elastomers/Thermosets:

Elastic Response of Polymers

Elasticity of polymers:

- is sensitive to temperature (relative to T_g) and rate of loading
- differs between polymer classes, due to crystallinity and cross-linking.

(1a) Amorphous thermoplastics

Glassy region ($T < T_{a}$):

- loading stretches low stiffness secondary bonds
- E of order 1–3 GPa (cf: metals, 40–200GPa; ceramics, 100–1000 GPa)

Glass transition ($T \approx T_a$):

- segments of chain melt, and modulus falls steeply
- reptation takes place molecules slide past one another
- transition not abrupt (range of bond lengths in amorphous microstructure)

Rubbery region/viscous flow $(T > T_{g})$:

- very low stiffness above T_q (roughly 1000 times lower: a few MPa)
- · rubbery elasticity is due to entanglement points
- above 1.4 T_q , chains all slip: viscous flow

Footnote - effect of loading rate:

- deformation around and above T_g relies on molecular sliding, which is sensitive to the rate of deformation
- hence E depends on the loading rate
- T_{α} must be defined at a reference loading rate

(1b) Semi-crystalline thermoplastics: effect of crystallinity

degree of crystallinity:

- Crystalline regions stiffer than amorphous: higher E below T_q.
- Glass transition: no effect on crystalline regions.
- Rubbery region: E increases with degree of crystallinity
- At high crystalline fractions, glass transition has no effect on E.
- At T_m, crystalline regions melt: viscous flow.

(2,3) Elastomers, thermosets: effect of cross-linking

Elastomers:

- Below T_g (well below room temperature): glassy
- Above T_g: pronounced rubbery region.

In rubbery region:

- large recoverable strains at low stresses
- chains unravel extensively, pulled back by cross-links when the load is released.

Thermosets:

- Highly cross-linked, no effect of glass transition.
- Stiffer than thermoplastics in the glassy region; E falls slowly on heating.

Summary - key points:

- Young's modulus and density of polymers are governed directly by molecular packing and bonding;
- elastic response is sensitive to detail in molecular structure, in particular the degree of crystallinity or cross-linking (defining the polymer classes);
- significant drop in modulus in thermoplastics and elastomers at the glass transition (which itself depends on the rate of loading);
- both E and ρ are much lower than for metals and ceramics;
- Young's modulus of polymers can be manipulated more than in metals (by changing molecular weight, polymer chemistry, and degree of crystallinity or cross-linking – via processing).

3.5 Manipulating Properties I

3.5.1 Foams

Foams are *porous solids*. Porous, cellular solids are found extensively in nature – wood is a highly efficient natural engineering material.

Commercial foams use polymers of various stiffnesses, with open or closed cells. Recently, ceramic and metallic foams have been developed.

Foams are described by their *relative density* = $\frac{\text{density of foam}}{\text{density of solid used}}$

Simple model for Young's modulus of a foam:

- idealised unit of material as shown
- elastic response dominated by *bending* of the solid ligaments

Key result is:
$$\frac{E_{foam}}{E_{solid}} = \left(\frac{\rho_{foam}}{\rho_{solid}}\right)^2$$

On Young's modulus-density chart: lines of slope 2 lead from solid to foam.

3.5.2 Composite materials

Composite materials combine two materials to produce *new property profiles*, exploiting separate qualities of the individual components.

Material	E (GPa)	ρ (Mg/m ³)	Ε/ρ	Comment
Ероху	2.7	1.25	2.2	Low specific stiffness
C fibres	400	1.85	216	Very high specific stiffness, but not in a usable structural form
CFRP	69-150	1.55	45-100	Fibres + epoxy provides usable form, and protects fibres from damage
Structural alloys	42-210	1.8-9.0	≈ 23	CFRP superior in specific stiffness to all alloys

Example: CFRP (carbon fibre reinforced polymer)

Three main *composite geometries*, dependent on component architecture:

- *Particulate*: metal ceramic: AI-SiC, WC-Co; polymer – ceramic: "filled polymers", e.g. glass-polyester
- Fibres: carbon/glass/Kevlar fibre polymer
- Laminates: plywood; "GLARE", "ARALL" (AI GFRP laminates)

Particulate

Fibre

Laminate

Composite processing:

Particulate composites:

 add micron-scale particles to melt before casting or moulding (Note that many polymers are powder-filled – to provide stiffening, colour, UV resistance etc.)

Fibre composites:

- short chopped fibres: mix with resin, shape in a mould, e.g. canoes
- long continuous fibres:
 - lay out fibre mats in a mould, and infiltrate with resin
 - combine fibre+resin in "prepreg" plies, then laminate

Laminates:

- wood etc: stack and glue thin layers
- long-fibre composites: stack multiple layers of prepreg with different fibre orientations, hot form to shape, curing the resin

Estimates for Composite Properties

Composites are defined by the *volume fraction* V_f of one of the components, e.g. the volume fraction of the particle or fibre reinforcement added to a matrix material.

Density

For all composites, density follows a simple *rule of mixtures* between the densities of the two components (i.e. mass conservation):

$$\rho_c = V_f \rho_f + (1 - V_f) \rho_m$$

Note subscript notation:

c = composite, m = matrix, f = reinforcement (as often *fibres*)

Young's Modulus

Laminated composite, in edge view:

Layers have modulus E_f and E_m ($E_f > E_m$)

 V_f = volume fraction of stiffer (E_f) material.

Stiffness differs parallel and perpendicular to the layers – the material is *anisotropic*.

Loading *parallel* to the layers:

Loading *perpendicular* to the layers:

Young's Modulus parallel to layers

(for derivations - see Appendix)

Longitudinal modulus:

$$B: \quad E_c = \frac{\sigma_c}{\varepsilon_c} = V_f E_f + (1 - V_f) E_m$$

(denoted E_{II} in Databook)

Young's Modulus perpendicular to layers

Transverse modulus:
$$E_c = \left(\frac{V_f}{E_f} + \frac{(1 - V_f)}{E_m}\right)^{-1}$$

(denoted E_{\perp} in Databook)

These "Voigt-Reuss equations" are *upper and lower bounds* for E: composite moduli must lie between (or on) these limits.

Particulate composites?

- isotropic (same in all directions)
- close to lower bound (equal stress)

Fibre composites?

- anisotropic (stiffer parallel to fibres)
- parallel to fibres: upper bound exact (equal strain)
- perpendicular to fibres: close to lower bound (equal stress)

Note: practical upper limit on V_f in fibre and particulate composites, \approx 50%.

Case study: artificial bone for prosthetic implants

Problem: Prosthetic hip implants – Ti alloy or stainless steel (15-30 x stiffer than bone). Load transfer can be poor - the bone resorbs under too much stress.

Possible solution: Particulate composite -HDPE + hydroxyapatite, HA (the mineral found in bone, but manufactured artificially).

Prototype HDPE-HA composite

- good biocompatibility
- Images courtesy: E. Tanner, QMC London HDPE HA **Fracture surface**
- potentially close *match with E for bone* (see Examples Paper 2)

Appendix: Derivation of composite Young's modulus parallel to layers Total load F = load in f layers + load in m layers = $A_f \sigma_f + A_m \sigma_m$

where A_f , A_m = cross-sectional area of f and m layers, respectively Average stress in composite, $\sigma_c = F/A = \frac{A_f}{A} \sigma_f + \frac{A_m}{A} \sigma_m$

But area fractions of *f* and *m* layers: $\frac{A_f}{A} = V_f$ and $\frac{A_m}{A} = (1 - V_f)$

Hence stresses follow a rule of mixtures: $\sigma_c = V_f \sigma_f + (1 - V_f) \sigma_m$

Substitute for stresses using Hooke's Law: $\sigma_f = E_f \epsilon_f$, $\sigma_m = E_m \epsilon_m$

Hence: $\sigma_c = V_f E_f \varepsilon_f + (1 - V_f) E_m \varepsilon_m$

But *strains same* in composite and each material: $\varepsilon_c = \varepsilon_f = \varepsilon_m$

Longitudinal modulus:
$$E_c = \frac{\sigma_c}{\varepsilon_c} = V_f E_f + (1 - V_f) E_m$$

(denoted E_u in Databook)

Derivation of composite Young's Modulus perpendicular to layers

Similar argument followed for the transverse modulus

- stress the same in both materials
- V_f and $(1 V_f)$ correspond to "length fractions" in loading direction
- *total strain* found by noting that total *extension* is the sum of the extensions in the two materials (i.e. *strain* follows a rule of mixtures)

Complete this derivation as an exercise (for worked solution – see online resources).

Transverse modulus:
$$E_c = \left(\frac{V_f}{E_f} + \frac{(1 - V_f)}{E_m}\right)^{-1}$$

(denoted E_{\perp} in Databook)