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2.   Elastic Properties of Materials

2.1   Elastic Stiffness in Design

Many engineering components need to behave elastically under load, i.e.

Examples:  

- “structural” applications:  bridges, buildings, vehicles, bicycles, 
furniture, machines ....

- “functional” applications: precision instruments, hard disk drives ….
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The stiffness of a component or structure is:

Stiffness depends on: 
- material (steel, wood, CFRP…)
- cross-section size + shape (tube, I-beam …) 
- mode of loading (tension, bending)

e.g. cantilever: W

δ

W

δ

Intrinsic material stiffness measured by Young’s modulus, E (defined below).

Effects of size, shape, loading: use results from IA Structures.
 

2.2   Stress and Strain

2.2.1  Uniaxial Tension and Compression

Stress
Stress, σ =

F F

Area, A

F F

Area, A

This is a normal or direct stress (i.e. force perpendicular to loaded area).

Stress is measured in Pascals (usually MPa:  1 MPa = 106 N/m2 = 1 N/mm2).
 

Strain
Strain, ε =

This is a normal or direct strain (i.e. extension parallel to original length).

Strain is a ratio of lengths, so it is dimensionless (no units).  

For most materials elastic strains are small (< 0.1%) – rubber is an exception.

σ

o



σσ

o



σ
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Lateral strain is not due to volume conservation, but reflects the way atomic 
bonds deform under load.   Typical values of Poisson’s ratio, ν : 

crystalline materials (metals, ceramics) 
porous solids (foam, cork)
elastomeric polymers  (rubber)

Poisson’s ratio

ν = (note minus sign, so ν is positive)

In uniaxial tension:
- the material gets longer and thinner
- the lateral contraction and the tensile extension are proportional
- the ratio is a material property: Poisson’s ratio, ν (Greek “nu”, not “v”):

 

When does Poisson's ratio matter?
- not important in most design with uniaxial loads 

(e.g. members in a truss: fractional change in area)
- important when the stress state is 2D or 3D

(e.g. constrained  expansion – examples later)

M M

tension

compression

M MM M

tension

compression

tension

compression

principal
curvature

tension

compression

principal
curvature(try bending a standard drawing rubber!)

- important in large strain bending, 
giving anticlastic curvature:

- important in vibration of plates
(e.g. affects frequencies of vibration modes)
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Stress

Strain

Stress

Strain

For uniaxial tension (or compression):  

Young’s modulus, E =

Young’s Modulus
Most engineering materials are linear elastic:  under uniaxial load, a sample 
of constant cross-section extends in proportion to the load (Hooke’s Law).

By converting load to stress, and extension to strain:
- the response is made independent of geometry;
- the slope is then a material property, Young’s modulus, E.

Force

Extension

Force

Extension

 

2.2.2  Stress and Strain in 3D

Hooke’s Law in 3D

Axes: Loading: 

Some engineering components are loaded uniaxially, e.g. cables, struts; 
but often the stresses are multiaxial, e.g. beams, arches, pressure vessels.  

Strain is always 3D (due to Poisson’s ratio).

Consider a unit cube of material (representing any volume element in a 
uniformly loaded body), under a general set of normal stresses (σ1, σ2, σ3).

1

2 3

1

2 3

σ1

σ2 σ3

σ1

σ2 σ3

To find resulting strains: apply each stress in turn, and use superposition.
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e.g.  load in 1-direction only:

Repeat for each stress in turn, and sum the strains:

Strains due to stress σ1:   ε1 =   

ε2 =   

ε3 =   

σ1

2 3

σ1

2 3

( )

( )

( )3213

3212

3211

1

1

1

σσνσνε

σνσσνε

σνσνσε

+−−=

−+−=

−−=

E

E

E
General form of 
Hooke’s Law in 3D.

 

Dilatation

Consider the unit cube again, for a general strain state (ε1, ε2, ε3):

When materials strain elastically, their volume changes.  

Volumetric strain is called the dilatation, ∆ = 

ε1

ε 2 ε 3

ε1

ε 2 ε 3

Initial volume:  Vo = 1

Final cube dimensions: (1+ε1, 1+ε2, 1+ε3)
Hence final volume:

Hence for small strains (ε<<1), dilatation is:    
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Bulk Modulus
A state of hydrostatic stress is when all three normal stresses are equal, 
e.g. under uniform external pressure  p:    

This loading occurs in ceramic manufacturing, when powders are compacted 
under large pressures (“hot isostatic pressing, or HIPing”).

From Hooke’s law in 3D (noting the symmetry):

Hence the dilatation is:    

p−=== 321 σσσ

p

p p

p

p p

( ) ( )νννεεε 211
321 −−=++−===

E
pppp

E

Define the bulk modulus, K  =
(units: GPa)     

Comparison with Young’s modulus, E:   
crystalline materials (metals, ceramics), ν ≈ 0.3:  

rubber, ν ≈ 0.5:  

 
 

2.2.3   Shear Stress and Strain

Shear Stress

Normal stress (as above): 
force per unit area carried perpendicular to a plane within the material. 

For uniaxial tension, consider an 
arbitrary plane which is inclined 
to the specimen axis:

F F

Area, A

F F

Area, A

Shear stress:  
force per unit area carried parallel to a plane within the material.
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For equilibrium, the shaded surface must carry components of force both 
normal and parallel to the surface:

Notes:
- usual symbol for shear stress:  τ (Greek "tau");
- forces may be related by resolving, but this is NOT true for the stresses 

(as stresses on the inclined plane act on a different area to the axial stress);
- there is a simple trigonometric relationship between the stresses 

(allowing for the effect of the angle of the plane on both force components 
and plane area – further analysis in IB Structures).

Fnormal

F

Fshear

Fnormal

F

Fshear

σnormal

σuniaxial

τshear

σnormal

σuniaxial

τshear

Or as stresses:

 
Key points:

- the description of a stress state depends on the orientation of the surfaces
“cut” through the solid;

- shear stresses arise in almost every loading situation, but may be off-axis
from the obvious orientations chosen.

Examples of shear forces and stresses in structural components:
- arches, beams in bending, shafts in torsion

W

W
2

S

M

Shear force, S: “stress resultant” 
of in-plane shear stresses 

Bending moment, M: “stress resultant” 
of out-of-plane normal stresses 

W

W
2

S

M

Shear force, S: “stress resultant” 
of in-plane shear stresses 

Bending moment, M: “stress resultant” 
of out-of-plane normal stresses 

Torque, Q

Shear
stress,
τ

Torque, Q

Shear
stress,
τ
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Shear strain
Shear stresses distort the shape of a volume element, rather than changing 
its axial dimensions.

As for stress, the description of the strain state depends on the axes chosen. 

Shear strain:
w

o

w

o

Consider the 2D element loaded as shown: the strains will be purely normal.

Stresses: Strains: σ

σ

σ σ

σ

σ

σ σ

ε2

ε2

ε1 ε1

ε2

ε2

ε1 ε1

(i.e. for small strains, tan γ = γ)   

 
 

Imagine the lines joining the mid-points of the original square, before and 
after the deformation:

Simple analysis relates:
- the pure shear stress  τ to the biaxial tension/compression stress  σ
- the shear strain  γ to the normal strains, ε1 and ε2

τ τ

τ τ

τ τ

τ τ

 

 8 



Shear Modulus
In some loading situations, the stiffness in shear is relevant (e.g. twisting of a 
shaft loaded in torsion).  The shear modulus G  is defined as:

Using the normal–shear relationships between stress and strain (for pure 
shear) and Hooke’s Law, the shear modulus  G  and  Young’s modulus  E  
are related by: 

Typical value for crystalline materials (ν ≈ 0.33):
 

2.2.4   Summary: Relationships between elastic constants

(i)  Four elastic constants have been defined:  E,  ν,  K  and G.

(ii)  3D elastic analysis assumes that the material is isotropic
(i.e. same properties in all directions):

- OK for crystalline materials and some polymers;
- not for aligned materials: drawn polymers, wood or fibre composites.

The relationships between them are:

and
)(

EK
ν213 −

= )(
EG

ν+
=

12

(iii)  For isotropic materials there are only two independent elastic constants –
given any two, the others can be found. 

 

2.3   Analysis of Stress and Strain

Two additional situations are addressed here:
- constrained deformation
- thermal stress and strain.

Analysis of stress and strain is fundamental to Structures, Materials and 
Mechanical Design.  

The Part I Structures courses cover many in depth:
- truss deflection and failure, pressure vessels, 
beam stresses and deflections, torsion of shafts

These solutions are used in Materials for material selection problems. 
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2.3.1  Constrained Deformation

Under uniaxial tension (or compression) elastic materials strain laterally 
(Poisson’s ratio).

What if the material is constrained: i.e. lateral strain is prevented?   

Example:  constrained compression of a cube

Consider a cube of material fitted into a square-section slot in a rigid plate, 
and loaded with a compressive stress σ1.

σ1σ1
2-direction:  parallel to the slot
3-direction:  across the slot

Strain in the 3-direction is zero:

 

The material tries to expand in the 3-direction – a compressive stress σ3
is induced to prevent this.  From Hooke’s Law in 3D: 

Hence:

Strain in the 1-direction (due to both stresses) is given by:

Hence the “effective modulus”, =
1

1

ε
σ

Key points:
- constraint induces a transverse stress: nominally uniaxial loads generate

biaxial (or triaxial) stresses in the material;
- the apparent material stiffness is increased, by a factor 1/(1 – ν2).
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How much is this factor?    
- crystalline materials  (ν ≈ 0.33):

- rubber  (ν ≈ 0.5):   

The effect is even more marked in rubber if there is constraint in both
transverse directions (since rubber is incompressible).  

e.g. shoe soles:
- thin layers of rubber loaded in compression
- constrained (by friction) from expanding sideways
- solid rubber soles: feel very stiff (unexpected when rubber is chosen 

for its low Young’s modulus, to provide cushioning!)

How are shoe soles designed to give a springy response (Ex. Paper 2)?
 

2.3.2  Thermal Stress and Strain

All materials expand as temperature rises.  To a good approximation, the 
strain caused by a temperature change, ∆T, is proportional to ∆T.   

Strain/unit temperature change = thermal expansion coefficient, α (units:  K-1).

Typical values: Material α × 10-6 (K-1)

Ceramic Alumina 9.0

Metals Steels 12

Aluminium Alloy 22

“Invar” (Ni-Fe alloy) 1.0

Polymer Nylon 145

 
Thermal expansion is important in design when:

- constrained expansion or contraction  (inducing thermal stresses);

- temperature gradients exist across a product, again inducing thermal 
stresses (e.g. heat treatment of metals);

- dissimilar materials are joined and then subjected to temperature change,
giving differential thermal expansion/contraction, and induced stresses.

The last of these is exploited 
directly in the bimetallic strip:
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Example 1:  railway track
Estimate the stress induced in a continuous steel railway track subjected to 
a 40oC temperature rise above an initial (stress-free) temperature.

Thermal strain  εthermal =

Total strain = 0, hence:    εelastic =   – εthermal

Induced elastic stress: 

Values for steel:  α = 12 × 10-6 K-1,  E = 210 GPa

For ∆T = 40 K:  

In compression this stress may cause buckling.  
Hence must leave expansion gaps, or install 
under tension.

Adelaide, January 2009

 

Example 2:  constrained surface layers
Many coating technologies (for wear or corrosion resistance) deposit a thin 
surface layer of a different material on a component at high temperature.

Consider a thin film on a component of thickness >> film thickness, x , and 
examine a length  ℓo (at high temperature) away from the edges of the 
specimen:

x

>> x

o

x

>> x

o
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First imagine the layer is not attached to the substrate, and cool component 
by a temperature drop ∆T:

On cooling, differential contraction of substrate and surface layer can induce 
thermal stresses.

x

>> x

o

x

>> x

o

For α1 > α2, surface layer is restrained from contracting by the substrate and 
goes into tension, balanced by compression in the substrate.

 

As the surface layer is thin compared to the substrate:
- compressive stress negligible (large area to provide balancing force); 

- final length = that of substrate =

Superpose tensile stress in surface layer, to increase its length from its 
contracted length, to match that of the substrate:

- change in length:

- strain in surface layer:

Since  (α1 ∆T) << 1,  strain = 

Notes:
- if α1 < α2 , analysis still valid, but surface layer goes into compression.
- surface stress is biaxial (and equal in all directions): use 3D Hooke’s Law

to find biaxial stress in surface layer that produces this strain (Ex. Paper 2).

- key result is:  
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2.4   Measurement of Young’s Modulus

Wide range of methods for measuring Young’s modulus:
• tensile testing (Experiment 4)
• bending stiffness of a beam
• natural frequency of vibration (beams, plates – IB Experiment M1)
• speed of sound in the material, 

(Notes below on practicalities, accuracy etc.)

ρ/E

Tensile Testing:
Uniaxial tension applied to sample of standard, uniform cross-section:

e.g. Hounsfield tensometer (Materials Lab, Experiment 4)

Measure extension of gauge length,
from machine extension, or directly 
from the sample using a strain gauge.

Convert load vs. extension graph 
to stress vs. strain:  gradient E. 

Accuracy:
- elastic extensions small (< 0.1%), difficult to measure precisely 
- measurement from machine must allow for flexure of machine
- strain gauge much higher precision

F  F  

gauge length o

area A

E

1

 σ =  F/A

ε = e/o

Bending Stiffness of a Beam:
Beam of uniform cross-section loaded in 3-point bending:

Stiffness (F/δ ) related to E via beam theory 
(IA Structures).

From Structures Databook:

F  

span L

δ

Accuracy:
- bending gives much more deflection for given load than tension
- E sensitive to L and D: requires accurate measurement of dimensions

EI is the flexural rigidity;  I is the second moment of area, and captures the effect 
of cross-section size and shape:

e.g. for a square section of side-length  D: 

Hence for 3-point bend of square section beam:  

124 /DI =

4

3

4 D
L)/F(E δ

=
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Natural frequency of vibration (beams and plates)
Natural frequency of vibration in bending depends on flexural rigidity, EI

Accuracy:
- measuring frequency more accurate than deflection
- calculated  E still sensitive to beam/plate dimensions (through  I and L)

Beam supported at nodal points 
and set vibrating:

For video demo, see: http://www-materials.eng.cam.ac.uk/HRSMaterials/chladni_demo.html

Plate supported on soft mounts 
over a loudspeaker emitting note 
of adjustable frequency.

“Chladni patterns” – nodal lines
(revealed using tea leaves)

(Note: this method is also a good 
way to measure Poisson’s ratio)

 

Speed of Sound in the material:
The speed of sound vt in a solid depends on stiffness of inter-atomic bonds.
Young’s modulus E also depends on bond stiffness (see later notes).
Hence measure E by measuring vt :

- strike a bar of material on one end
- time the longitudinal wave reflected from far end of the bar

Accuracy:
- for 1m long bar, time between pulses  ≈ 1/5000 = 0.2 ms
- accuracy depends on precise time measurement, which is relatively easy 

with piezoelectric transducers

Dimensional analysis:                  ,  where ρ is the densityρ2
tvE =

i.e. speed of sound                       ρ= /Evt

vt =  (E/ρ)1/2 =  (210×109 / 7800)1/2 =   5188 m/s 
e.g.  for steel: E = 210 GPa,  ρ = 7800 kg/m3

 
 

 15 



2.5   Data for Young’s Modulus – Material Property Charts
Data sources for Young’s Modulus (and other properties):

- Materials Databook
- Cambridge Engineering Selector (CES) databases

Material Property Charts
- graphs with two properties as axes 
- facilitates material comparison and making trade-offs in design

Material Property Chart: Young’s Modulus vs. Density (Materials Databook)
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Notes on Property Charts:
- log scales: properties span many orders of magnitude
- ranges of the two properties define a “bubble” on the chart (usually drawn as an ellipse)
- materials cluster by class, enclosed by an envelope

Notes on Young’s modulus:
- Young’s modulus for solid materials spans over 6 orders of magnitude
- metals, ceramics and composites are stiff materials
- polymers, natural materials and foams are generally much less stiff, and cover a very wide

range of stiffness

Notes on Density:
- density for solid materials spans a factor of 20
- polymer foams & porous natural materials (e.g. wood) extend the range to much lower values
- most ceramics, and composites, have similar densities to the 

“light metals” (Mg, Al, Ti);  steels and other metals have high densities
- only porous materials and the lightest polymers float in water (ρ = 1 Mg/m3)

Physical observations:

- materials in a given class (metals, ceramics etc) cluster together 
(indicating similarity in underlying physical basis of the properties)

- general trend for ceramics and metals: Young’s modulus increases with density 
(though with exceptions, such as Pb alloys)

- individual classes of metals (e.g. steels, Ti alloys etc) have well-defined values of Young’
modulus and density (small bubbles)

- polymers cover a wide range of Young’s modulus, but their densities are all around 1-2 Mg/m3;
individual polymers are omitted for clarity  
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3. Microstructure of Engineering Materials I
3.1  Introduction:  Length Scales in Materials Engineering
3.2  Crystalline Materials:  Metals, Ceramics
3.3  Atomic Basis of Elasticity of Metals and Ceramics
3.4  Polymer Elasticity
3.5  Manipulating Properties I:  Foams, Composite Materials

Section 3 covers Examples Paper 2, Q.7-10.
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?             devices

Microstructure for Engineers
Engineering spans length scales from kilometre-scale structures to electronic 
devices and micro-electro-mechanical-systems (MEMS) at fractions of 1 mm.

3.   Microstructure of Engineering Materials I
3.1   Introduction: Length-scales in engineering materials

Atoms: typical radius = 0.1 – 0.2 nm
Microstructure: from atom-scale defects, compounds of atoms, “grains” 
(crystal regions), to “engineering” defects such as cracks, porosity and 
surface roughness (at µm – mm scale).

 

“Teach Yourself Microstructure”
Topics covered (and assumed in lectures):

- primary and secondary bonding
- crystal packing in metals and ceramics, and atomic basis of density
- polymer microstructure  
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Why do engineers need to know about microstructure?
• macroscopic engineering-scale properties (mechanical, thermal, 

electrical…) are governed directly by the internal microstructure;
• different features at different length-scales determine each property.

Understanding microstructure enables materials engineers and scientists to:
• recognise the physical origin and inherent limits on properties, 

i.e. to target best openings for developing new or improved materials;
• know what can be manipulated (e.g. by changes in composition, 

or in processing) and what cannot;
• avoid key failure mechanisms in design:  yield, fracture, corrosion.  

In crystalline materials, atoms pack in a regular repeating lattice structure.  

Metals are sometimes used in a pure form (e.g. Al foil, Cu conductors) but 
most commonly as alloys (mixed with other metal and non-metal elements):

• Steels and cast irons (Fe-C, plus Mn, Ni, Cr….)
• Al alloys (Al+Mg, plus Cu, Zn, Si….)
• Cu alloys (Cu-Sn: bronze; Cu-Zn: brass)  

Ceramics are compounds of metals or silicon with non-metals (O, C or N):
• Technical ceramics: alumina, silicon carbide, silicon nitride
• Glasses (based on silica)
• Porous ceramics: brick, concrete, pottery

Properties and applications of common metals and alloys, and ceramics, 
are tabulated in the Materials Databook (and in the CES software).

3.2   Crystalline Materials: Metals, Ceramics

 

Elastic Response of Metals and Ceramics
Primary bonds behave as stiff elastic springs, 
with force–displacement response of the form: 

3.3  Atomic Basis of Elasticity of Metals and Ceramics

orr
o dr

dFS
=







=

Gradient of the F– r response 
(at the equilibrium spacing ro ) 
is the bond stiffness  So:  

 

 19 



 

Number of bonds/unit area is fixed (by the lattice geometry)
Area per bond is of order ro

2

For a small displacement from equilibrium, u:

Hence the stress ≈

i.e. Young’s modulus, E  = stress/strain  ≈

Restoring force per atom =
and the strain =

Key points:
• Young’s modulus of a component directly reflects the bond stiffness, 

on a length scale 1010 times smaller!  
• atomic F–u response is linear, giving linear elasticity at the macro scale;
• primary bond stiffness and atomic packing are physically prescribed;
• little scope for manipulating Young’s modulus  via the crystal structure;
• recall that the same is true for density (Teach yourself microstructure).

 
Properties of Alloys
Alloys are mixtures of elements, forming solid solutions and compounds.

Density
From the hard sphere model, solid solutions and compounds will form 
densities between those of the pure elements.
Example densities (Mg/m3): 

Young’s Modulus
Solid solutions contain a mixture of different bond stiffnesses (A-A, A-B, B-B):
⇒ Young’s modulus of A-B solutions somewhere between pure A and pure B.

Compounds have stiffer bonds, and higher modulus – the stronger chemical 
bond is a major reason why the compound forms.  
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Example:  Copper-nickel alloys form solid solutions of Cu and Ni across all
compositions (used for conductors, electroplating, coinage).  

Data for E across the composition range (from CES): 

Alloy E (GPa)
Pure Cu 122
Cu – 10% Ni 125
Cu – 30% Ni 148
Cu – 70% Ni 158
Pure Ni 190

Summary:  key points
• Young’s modulus and density of crystalline materials are governed 

directly by atomic packing and atomic bonding;
• For alloys, both properties are well-defined by the composition, 

with no scope for change by processing.
 

A short aside:  amorphous metals
Metals crystallise easily – some can be forced to
retain an amorphous structure if cooled very fast.  

Amorphous metals have unusual properties:
• mechanically and magnetically hard
• very low damping (little energy lost in elastic collisions).

Recently, bulk amorphous metals have been 
produced which solidify at conventional rates, 
using very unusual compositions: 

e.g. Be–Zr–Ti–Cu–Ni–Y alloy!

These alloys contain atoms of widely different sizes, making regular crystal 
packing difficult.
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3.4  Polymer Elasticity 
Classes of polymers
Thermoplastics:  polyethylene (low & high density: LDPE, HDPE),

polyvinylchloride (PVC), polypropylene (PP), polystyrene (PS) …. 
Trade-names commonly used:  nylon, acrylic, teflon, perspex…
Elastomers:  rubbers, neoprene ….
Thermosets:  epoxies, phenolics, polyurethane ….
Polymer nomenclature, properties and typical applications are summarised in 
the Materials Databook and the CES software.

Polymer “Alloys”
Polymer molecular chemistries are well-defined, and different polymers 
don’t mix as freely as metallic atoms. 
There are two mechanisms for “alloying” polymers:
Copolymers: more than one monomer polymerised together – only a few 
combinations will do this, e.g. acrylonitrile, butadiene, styrene (ABS).
Polymer blends: molecular-scale mixtures of two polymer chains, without 
cross-linking.

 
Glass transition, melting and decomposition temperatures
In crystalline materials and glasses, the breaking of primary bonds by thermal 
energy gives a well-defined melting point, Tm.
In polymers, the weaker secondary bonds are overcome by thermal energy at 
a lower temperature: the glass transition temperature, Tg. 

Compare with melting points Tm of primary bonded crystalline materials:

• metallic bond:

• ionic bond:

• covalent bond:

Typical values for Tg
(see Materials Databook):

Polymer Tg (°C)
Acrylic (PMMA) 85   - 165

Polystyrene (PS) 74   - 110
Polyethylene (PE) – 25   - – 15

Natural Rubber – 78   - – 63
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Above Tg, the behaviour differs between the polymer classes:
• Amorphous thermoplastics: melt to a viscous liquid (entangled molecules 

slide over one another).

• Elastomers and thermosets: secondary bonds melt at Tg but cross-links 
do not – on heating the polymer does not melt, but decomposes or burns. 

• Semi-crystalline thermoplastics: amorphous regions melt, crystalline 
regions survive to a higher melting point, Tm (typically Tm ≈ 1.5 Tg, in K), 
above which a viscous liquid forms.

Consequences for processing and  environmental impact:

Thermoplastics: 

Elastomers/Thermosets: 

 
Elastic Response of Polymers
Elasticity of polymers:

• is sensitive to temperature (relative to Tg) and rate of loading
• differs between polymer classes, due to crystallinity and cross-linking.

(1a) Amorphous thermoplastics

E

1 GPa

1 MPa

Tg

TEMPERATURE

E

1 GPa

1 MPa

Tg

TEMPERATURE

E

1 GPa

1 MPa

Tg

TEMPERATURE

Glassy region (T < Tg):  
• loading stretches low 
stiffness secondary bonds

• E of order 1–3 GPa
(cf:  metals, 40–200GPa;  
ceramics, 100–1000 GPa)
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Glass transition (T ≈ Tg):  
• segments of chain melt, and modulus falls steeply 
• reptation takes place – molecules slide past one another
• transition not abrupt (range of bond lengths in amorphous microstructure)

Rubbery region/viscous flow (T > Tg):
• very low stiffness above Tg (roughly 1000 times lower: a few MPa) 
• rubbery elasticity is due to entanglement points
• above 1.4 Tg, chains all slip: viscous flow  

Footnote – effect of loading rate:
• deformation around and above Tg relies on molecular sliding, which is 

sensitive to the rate of deformation
• hence E depends on the loading rate
• Tg must be defined at a reference loading rate  

(1b) Semi-crystalline thermoplastics: effect of crystallinity

amorphous

• Crystalline regions stiffer than
amorphous: higher  E  below Tg. 

• Glass transition: no effect on 
crystalline regions.

• Rubbery region:  E  increases 
with degree of crystallinity

• At high crystalline fractions, glass
transition has no effect on E. 

• At Tm, crystalline regions melt: 
viscous flow.

degree of 
crystallinity:E

1 GPa

1 MPa

Tg

TEMPERATURE

Tm
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E

1 GPa

1 MPa
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(2,3) Elastomers, thermosets: effect of cross-linking

amorphous

degree of 
cross-linking:

• Below Tg (well below room
temperature): glassy

• Above Tg: pronounced 
rubbery region. 

In rubbery region: 
• large recoverable strains 

at low stresses
• chains unravel extensively, 

pulled back by cross-links
when the load is released.

Elastomers:

• Highly cross-linked, no effect of glass transition.  
• Stiffer than thermoplastics in the glassy region; E falls slowly on heating.

Thermosets:

 

• elastic response is sensitive to detail in molecular structure, in particular 
the degree of crystallinity or cross-linking (defining the polymer classes);

Summary – key points:  
• Young’s modulus and density of polymers are governed directly by 

molecular packing and bonding;

• significant drop in modulus in thermoplastics and elastomers at the glass 
transition (which itself depends on the rate of loading);

• Young’s modulus of polymers can be manipulated more than in metals
(by changing molecular weight, polymer chemistry, and degree of 
crystallinity or cross-linking – via processing).

• both E and ρ are much lower than for metals and ceramics;

 

 25 



3.5  Manipulating Properties I

3.5.1   Foams
Foams are porous solids.  Porous, cellular solids are found extensively in 
nature – wood is a highly efficient natural engineering material.  
Commercial foams use polymers of various stiffnesses, with open or closed 
cells.  Recently, ceramic and metallic foams have been developed.

Foams are described by their relative density usedsolidofdensity
foamofdensity=

Simple model for Young’s modulus of a foam:
• idealised unit of material as shown
• elastic response dominated by bending

of the solid ligaments

Key result is: 
2









=

solid

foam

solid

foam

E
E

ρ

ρ

 

On Young’s modulus–density chart: lines of slope 2 lead from solid to foam.  

The theory works well, enabling prediction of E, ρ of “new” materials, 
e.g. aluminium foams
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3.5.2   Composite materials
Composite materials combine two materials to produce new property profiles, 
exploiting separate qualities of the individual components.
Example:  CFRP (carbon fibre reinforced polymer) 

Material E (GPa) ρ (Mg/m3) E/ρ Comment

Epoxy 2.7 1.25 2.2 Low specific stiffness
C fibres 400 1.85 216 Very high specific stiffness, but 

not in a usable structural form

CFRP 69-150 1.55 45-100 Fibres + epoxy provides usable 
form, and protects fibres from 
damage

Structural 
alloys

42-210 1.8-9.0 ≈ 23 CFRP superior in specific 
stiffness to all alloys  

Three main composite geometries, dependent on component architecture:
• Particulate:  metal – ceramic: Al-SiC, WC-Co;

polymer – ceramic:  “filled polymers”, e.g. glass-polyester
• Fibres:  carbon/glass/Kevlar fibre – polymer
• Laminates:   plywood;  “GLARE”, “ARALL” (Al – GFRP laminates)

Particulate Fibre Laminate  

Particulate composites: 
• add micron-scale particles to melt before casting or moulding
(Note that many polymers are powder-filled – to provide stiffening, colour, 

UV resistance etc.)

Fibre composites:
• short chopped fibres: mix with resin, shape in a mould, e.g. canoes
• long continuous fibres: 

- lay out fibre mats in a mould, and infiltrate with resin
- combine fibre+resin in “prepreg” plies, then laminate

Composite processing:

Laminates:
• wood etc:  stack and glue thin layers
• long-fibre composites: stack multiple layers of prepreg with different

fibre orientations, hot form to shape, curing the resin
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Composites are defined by the volume fraction Vf of one of the components, 
e.g. the volume fraction of the particle or fibre reinforcement added to a
matrix material.

Density
For all composites, density follows a simple rule of mixtures between the 
densities of the two components (i.e. mass conservation):  

Estimates for Composite Properties 

Note subscript notation:  
c = composite,  m = matrix,  f = reinforcement (as often fibres)

 

Young’s Modulus
Laminated composite, in edge view:

Loading parallel to the layers: 

Loading perpendicular to the layers:

Stiffness differs parallel and 
perpendicular to the layers –
the material is anisotropic.

F F

F F

F F

F Farea A

Layers have modulus Ef and Em
(Ef > Em)

Vf = volume fraction of stiffer (Ef) 
material.

 

(for derivations – see Appendix)Young’s Modulus parallel to layers 

Longitudinal modulus:                                                                 

(denoted EII in Databook)

mfff
c

c
c EVEVE )1( −+=

ε
σ

=

Young’s Modulus perpendicular to layers 

Transverse modulus: 

(denoted E⊥ in Databook)

1
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
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 −
+=

m

f

f
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E
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E

These “Voigt-Reuss equations” are  upper and lower bounds for E: 
composite moduli must lie between (or on) these limits.  
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Note: practical upper limit on Vf in fibre and particulate composites, ≈ 50%.

lower 
bound

upper 
bound

Particulate composites ?
• isotropic (same in all directions) 
• close to lower bound (equal stress)

Fibre composites ?
• anisotropic (stiffer parallel to fibres) 
• parallel to fibres: 

upper bound exact (equal strain)
• perpendicular to fibres:

close to lower bound (equal stress)

 

Problem:  Prosthetic hip implants – Ti alloy 
or stainless steel (15-30 x stiffer than bone).  
Load transfer can be poor – the bone 
resorbs under too much stress.

Case study:  artificial bone for prosthetic implants 

Possible solution:  Particulate composite –
HDPE + hydroxyapatite, HA (the mineral 
found in bone, but manufactured artificially).

Prototype HDPE-HA composite Fracture surface 
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• good biocompatibility
• potentially close match with E for bone (see Examples Paper 2)
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Total load F = load in f layers + load in m layers  

where  Af , Am  = cross-sectional area of f  and m  layers, respectively

Appendix:  Derivation of composite Young’s modulus parallel to layers 

mmff AA σ+σ=

Average stress in composite, σc  =  F/A m
m

f
f

A
A

A
A

σ+σ=

But area fractions of  f and  m layers:                     andf
f V

A
A

= ( )f
m V
A

A
−= 1

Hence stresses follow a rule of mixtures: mfffc VV σ−+σ=σ )1(

Substitute for stresses using Hooke’s Law: mmmfff EE ε=σε=σ ,

Hence: mmffffc EVEV ε−+ε=σ )1(

But strains same in composite and each material: mfc ε=ε=ε

Longitudinal modulus:                                                                 

(denoted EII in Databook)
mfff

c

c
c EVEVE )1( −+=

ε
σ

=

 

Derivation of composite Young’s Modulus perpendicular to layers 

Transverse modulus: 

(denoted E⊥ in Databook)
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Similar argument followed for the transverse modulus 
• stress the same in both materials
• Vf and (1 – Vf ) correspond to “length fractions” in loading direction
• total strain found by noting that total extension is the sum of the 

extensions in the two materials (i.e. strain follows a rule of mixtures)

Complete this derivation as an exercise (for worked solution – see online 
resources).
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