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(see:  Materials Science and Engineering:  
Mechanical Properties – Introduction to Property Charts
Case Studies – Bicycle Design)  

6.  Microstructure of Engineering Materials II

6.1   Atomic basis of Plasticity in Crystalline Materials
Recall that in crystalline materials, the key features of atomic packing are:

• atoms/ions pack together as hard spheres
• they pack in planes, which stack to form the lattice
• lattices are close-packed (FCC, HCP), or nearly so (BCC)
• straight lines of touching atoms form close-packed directions.

The atomic bonding  is strong and primary:  metallic, ionic or covalent.

• how is this achieved at the atomic level?
• can the behaviour be manipulated to increase material strength?

Elastic deformation displaces atoms by a fraction of their equilibrium spacing. 

Plastic deformation involves relative movement of material over very large 
multiples of the atomic spacing.

The issues therefore are:
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6.1.1  Ideal Strength of Crystalline Material

Estimate of upper limit on strength from atomic force-distance curve:

• bonds rupture at the dissociation
separation, of order 1.1 × ro, 
i.e. a strain of approx. 10%.

This is an estimate of the ideal strength of a material. 

Tensile stress needed to break all the bonds simultaneously is thus of order 
1/1.5  of a notional elastic stress at a strain of 10%:

• force – extension curve is linear near
equilibrium separation, and is shown 
extrapolated in the figure.  

• notional linear-elastic force at  
separation of 1.1 ro is higher than the
peak force – by a factor of order 1.5.

 

How does this order of magnitude estimate for ideal strength compare with 
the actual strength?

Glass, diamond:  fracture, close to the ideal strength
Ceramics:  fracture, around 10 times lower than ideal
Metals:  yield, at a stress 1000 times weaker than ideal

Typical data for                                   :







modulussYoung'

limitelastic

Plastic yielding therefore exploits another mechanism, enabling deformation:
• at much lower stresses than the ideal strength
• with the benefit that the material remains intact 

The key to this behaviour is the dislocation. 
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6.1.2  Dislocations

Dislocations are line defects in a crystal.

Consider a block of perfect material, with the atoms in a cubic lattice.  
Displace the top half of the block, on one side only, by one atomic spacing 
relative to the lower half:

n  atoms n  atoms

n  atoms

1  atom
spacing

n  atoms n  atoms

n  atoms

1  atom
spacinglattice

To accommodate this displacement:
• part of the interface between the blocks has slipped, and part has not
• the top block contains an extra half-plane of atoms  

The extra half-plane is found at the boundary between slipped and unslipped 
regions – the crystal defect at this point is called a dislocation:

3D view:
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Dislocation motion
Dislocations move by the action of shear stress parallel to the slip plane:

Note that when a dislocation moves:
• no atom moves more than a fraction of the atomic spacing
• the adjacent set of atoms become the “half-plane”

Dislocation

Slip 
plane

Bonds stretch
and re-form

Dislocation

Slip 
plane

Bonds stretch
and re-form

 
Consider a dislocation moving right through a block of material.  
This gives a net displacement between material above and below the slip 
plane: 

Slip step produced by the passage of one dislocation is the Burgers vector b.
Dislocations enable incremental slip by extending a few bonds at a time, 
which is why the stress required is so much less than the ideal strength.

shear stressshear stress
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Edge, screw and mixed dislocations

The dislocations considered so far are 
edge dislocations:
- shear stress and Burgers vector 
both at right angles to the dislocation
- dislocation moves in the direction
of the stress

b

shear stress

b

shear stress

b

shear stress

b

shear stress
In a screw dislocation: 
- shear stress and Burgers vector 
both parallel to the dislocation
- dislocation moves at right angles
to the stress
- same slip step produced as for 
edge dislocation

  

b

shear stress

b

shear stress

b

shear stress

b

shear stressMore generally dislocations are 
mixed:
- curved, and varying between
pure edge and pure screw

- move in a direction normal to 
the curve under the action of a 
shear stress (curved sections 
expand)

- net effect remains a slip step in 
the direction of the shear stress.  
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Dislocations in hexagonal lattices
Cubic lattices are convenient for visualising the idea of a dislocation.  
Dislocations are essentially the same in hexagonal lattices (FCC, HCP), 
but it is harder to visualise where the atoms are.  
The pictures illustrate a dislocation in a 2D hexagonal lattice 
(using a “bubble raft” model):

view 
along 
the 
arrows

dislocationperfect lattice

Notes:
• disruption of the lattice extends only a few atoms from the dislocation “core”
• easier to forget about the atoms and simply think of dislocations as line 
defects “gliding” across slip planes under the action of imposed shear stress

 

Incremental slip → macroscopic plastic strain
A dislocation crossing a lattice leads to an incremental slip step (in shear) 
of the order of one atomic spacing.  
How does this enable plastic strains of 0.1–10% or more? 

Two key aspects:
• crystals contain very many dislocations, with many different planes on 

which they can glide.  
• in (virtually) any stress state, shear stresses exist to move dislocations 

(recall the off-axis shear stress noted in uniaxial tension).  

Consider a crystal loaded in tension, with two dislocations crossing at 45o:
σ σ

σ σ
b

b

σ σσ σ

σ σ
b

b

σ σ
b

b

Net effect: crystal becomes longer and 
thinner by a small increment. 

Replicating this increment  x 1000s of 
dislocations on multiple slip planes 
produces continuum bulk plasticity.

This also shows why plastic deformation occurs at constant volume – blocks 
of material slip past one another but the crystal packing is unaffected.  
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6.1.3  Forces on dislocations
Dislocation resistance per unit length
Shear stresses apply a force (per unit length) to dislocations.
Crystals resist dislocation motion with a resistance per unit length, f.

To relate τ to f : consider the work done by τ  as the dislocation moves.
The dislocation moves when this force equals the resistance.

 

- the resistance force on the length 11: LfL

)( 21 LLτ
For the block of material shown:

- force applied by the shear stress =   

fb =τ- equating work done, force (per unit length) due to shear stress:                     
(equally valid for edge, screw & mixed)

bLL )( 21τ
2L b- when dislocation moves a distance      , force due to stress moves    , 

so the work done =  

- this force is moved a distance       ,  so the work done 21 LLf=2L

 

Intrinsic resistance to dislocation motion
The intrinsic lattice resistance to dislocation motion comes from additional 
bond stretching as the dislocation moves each Burgers vector step. 
This resistance depends on the type of bonding:

• Technical ceramics, diamond: covalent bonds ⇒ high intrinsic resistance: 
high hardness

• Metals: metallic bonds ⇒ low intrinsic resistance: annealed pure metals
are soft.

Metallic alloys are much stronger than pure metals:  this strength is obtained 
by providing additional obstacles to dislocation motion (see below).  
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Dislocation energy per unit length – the “line tension”
Atoms around a dislocation are displaced from their equilibrium spacing, and 
thus have a higher energy.  

2/2GbT ≈The result is:

(G = shear modulus; b = Burgers vector)

The energy (per unit length) can be calculated 
from the elastic stress-strain field around the 
dislocation core:

 
Effects of dislocation energy/unit length:

• line tension governs how dislocations interact with obstacles.  

• dislocations store elastic energy in the lattice: this controls the response in
heat treatment of deformed metals (e.g. recrystallisation – IB Materials).  

• dislocations try to be as short as possible – i.e. as if they are under tension; 
energy per unit length  is referred to as the line tension.

 
Dislocation pinning
When a gliding dislocation meets obstacles in its slip plane:
• it is pinned by the obstacles, and is forced to bow out between them, 

increasing the resistance per unit length

• dislocation escapes when either:
- force > obstacle strength (θ > 0o)

- dislocation forms a semi-circle (θ = 0o)

Strong obstacles:  θ = 0o :  
⇒ maximum resistance force  =  2T 

Weak obstacles:   θ > 0o:   
⇒ resistance force  <  2T 

• force on obstacle  =  2 T cos θ

• an additional shear stress  ∆τ is needed to overcome this resistance

As the dislocation bows out, it applies a force to the obstacle 
(via the line tension):

Force on 
dislocation 

Line 
tension T

L
Obstacle spacing

Bowing 
angle  θ
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For projected length  L  of dislocation between obstacles, additional force 
due to shear stress  ∆τ : 

• G:  elastic shear modulus
• b:  Burgers vector (atomic spacing)
• L:  obstacle spacing
• α:  obstacle strength

Shear stress to overcome obstacles:

This is a key result:   the contribution to the yield stress due to dislocation 
pinning depends directly on:

Since  T ≈ Gb2 / 2:

Hence shear stress needed to overcome obstacles:
(where c = 2: strong;  c < 2: weak)

 
  

Metals and alloys use several methods to pin dislocations:
• other dislocations:   work hardening
• solute atoms:   solid solution hardening
• particles of another solid (e.g. a compound):  precipitation hardening

        
            

          
         

 

 

6.2   Manipulating Properties II: Strength of Metals and Alloys

6.2.1  Work Hardening
Gliding dislocations on different slip planes interact: pinning occurs due to the 
additional bond distortion at the intersection.

The gliding dislocation (A) bows out until the pinning point gives way, creating 
a jog in the pinning dislocation (B).  Jogs then reduce the mobility of the other 
dislocations (B).  
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Strength contribution:

• additional shear stress from dislocation pinning ∝ 1/L

• spacing  L depends on the dislocation density, ρd

i.e.  total dislocation length per unit volume (units: m/m3, or m-2).

Dislocation density rises with strain – reducing the spacing, L, and increasing 
the resistance – this is called work hardening.

 
To estimate dislocation spacing,  assume dislocations form a parallel array 
on a square grid, L × L:

For unit length of dislocation:
- area per dislocation = L 2

- volume per dislocation = L 2

This is the reciprocal of dislocation density, ρd

Hence:

Additional shear stress from dislocation pinning:

L

L

 

⇒ dislocation spacing (work hardened): 

Typical microstructural data:

annealed:                          work hardened:

(cf. atomic diameter ≈ 0.2 nm)

        
         

 
 

Hence alloys may be hardened 
by deformation processing 
(e.g. rolling, wire drawing), to 
increase the dislocation density 
while shaping the product.  
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6.2.2  Solid Solution Hardening
Most mixtures of metal + other elements form solid solutions, sometimes 
over wide ranges of composition.
Solute atoms have a different size and local bonding to the host atoms in 
the lattice – they may be considered as roughening the slip plane:

slip plane in 
substitutional 
solid solution

Interstitial solid solutions also provide hardening, by displacing host atoms 
from their equilibrium positions – i.e. a similar effect on the slip plane.

Solid solutions provide a weak obstacle to dislocations, which bow out until 
the line tension pulls the dislocation past the solute atom. 
Casting is used to mix elements together in the liquid state, enabling solid 
solutions to be manufactured.  

Estimate of  solute spacing in a solid solution:
- consider the cubic lattice shown
- solute atoms regularly spaced 4 atoms apart: 

solute

lattice 
atom

Atomic fraction of solute =  

(typical values for alloys, 1-5%)

Spacing of solute atoms 

Strength contribution:
• additional shear stress from dislocation pinning ∝ 1/L
• spacing L of solute atoms scales with solute concentration C as 1/C1/2.  

Additional shear stress from solid solution:
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6.2.3  Precipitation Hardening
Alloying elements also form compounds.   When distributed as small 
particles within a lattice, they provide pinning points for dislocations.

particle 
intersecting 
a slip plane

Particles may be introduced in various ways (see below) – but the hardening 
is referred to generally as precipitation hardening.

Particles provide strong obstacles: the dislocation cannot pass over them, 
and (usually) the precipitate lattice is unrelated to the surrounding lattice.  

 
Mechanism of precipitation hardening

(a) the dislocation escapes by the 
linking of two adjacent bowing 
dislocations.

(b) a dislocation loop is left round 
the particle.

Maximum shear stress required to pass particles is when the dislocation 
bows out into a semi-circle (from above:  τ b L = 2T = Gb2 ). 

Additional shear stress
from precipitation hardening: (a)                   (b)
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Each particle also occupies the centre of 
a cube of side D.

Hence the volume fraction  f of particles: 

e.g. for typical volume fraction  f ≈ 5%,   
and particle radius  R ≈ 25 nm:

The particle spacing is determined by their size and volume fraction.  

Minimum gap between particles:(NB: these are particles,
not atoms).

2R

D

D

D

Assume a cubic array of particles of radius R, and centre-to-centre spacing D:  

Estimate of particle spacing in precipitation hardening:

(cf. dislocation spacing  ≈ 30nm;
solute spacing ≈ 1nm)  

6.2.4  Yield in Polycrystals:  Grain Boundary Hardening
So far: dislocation behaviour relates to dislocations in a single crystal, under 
the action of a shear stress parallel to the slip plane.

Grains and grain boundaries
Grains are produced in solid metals as a result of processing (IB Materials):

Metals are polycrystalline, so how does this affect dislocations? 

• casting: solidification occurs by nucleation and growth of tiny solid crystals
– these grow randomly until they impinge, forming grains;

• recrystallisation, grains re-form in the solid-state, by heat treatment 
following previous deformation. 

2D section through grains 

typical 
grain size 
≈ 100 µm

change in lattice orientation
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Dislocation motion in a polycrystal

• under a remote shear stress τ, the slip planes  
in different grains will vary in their alignment
with the stress 

• dislocations move first in grains which are
favourably oriented (A)

• yield occurs progressively throughout all the 
grains (B,C), at a higher remote shear stress

ττ

Shear stress needed to move dislocations: τy
(acting parallel to a slip plane).

The corresponding remote shear stress is typically: 
This is called the shear yield stress, k. 

To relate the yield stress σy to the shear yield stress k, note that: 
• a uniaxial stress gives maximum shear stress at 45o to the uniaxial axis
• magnitude of the shear stress is ½ the uniaxial stress

Hence: i.e. all previous hardening mechanisms directly
increase the macroscopic yield stress.

B                C

A

 
Footnote: grain boundary hardening – effect of grain size
The lattice orientation changes at a grain boundary.  As a result:

• dislocations cannot slip directly from grain to grain
• dislocation pile-ups occur at the boundaries
• additional stress from pile-up nucleates dislocations in the adjoining grain

The finer the grain size d, the more often boundaries obstruct dislocations. 
Grain boundary hardening given by Hall-Petch relationship:

(Note: this is a weak hardening mechanism – grain boundaries are much
further apart than dislocations, solute or precipitates. It is useful as a 
strengthening mechanism for pure metals or dilute alloys).

 
 

Yield stress data for work hardened alloys

Pure Cu, σy:                                  Cold-drawn Cu, σy :

(∆σy)wh ≈ (∆σy)wh ≈

This factor of  ≈100 in (∆σy)wh corresponds to a factor of 1002 = 10,000 in 
dislocation density.

6.2.5    Comparison of hardening mechanisms
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Yield stress data for solid solution hardened alloys
CES data for  σy of Cu-Ni alloys: solid solution from 100% Cu to 100% Ni. 

Alloy σy (MPa)
Pure Cu 60
Cu – 10% Ni 115
Cu – 30% Ni 145
Cu – 70% Ni 170
Pure Ni 80

 
Yield stress data for precipitation hardened alloys

What particle spacing (and size) gives useful precipitation hardening?
Example: what particle spacing in Al alloy gives a yield stress increment
(∆σy)ppt of 400 MPa?

(Close to previous estimate for a volume fraction 5% of spherical particles of 
radius 25nm).

For aluminium:  shear modulus  G = 26 GPa,  Burgers vector b = 0.286 nm.
Hence: 

Pure Al: High strength aerospace Al alloy:  

Pure Fe: Quenched/tempered high alloy (tool) steel: 

Recall for precipitation hardening:
• increment in shear stress to bow dislocations:
• yield stress increment is: 

LbGy /≈∆τ
yy τσ ∆≈∆ 3

 

• controlled temperature-time histories offer a versatile route to controlling 
precipitate structure, size and volume fraction (IB Materials)

• practical precipitates vary in size from clusters of 10 or so atoms, to 
compounds containing 106 or more atoms (i.e. diameters 0.5 – 200 nm)

Consequences: processing for precipitation hardening
A few % of particles around 25nm radius gives a useful strength increment 
(e.g. 400MPa in Al).
It is practically very difficult to manufacture solid particles this small, and to 
mix them into a melt before casting.
The main practical manufacturing route is to use heat treatment in the solid 
state, forming fine precipitates (from a solid solution) – hence the name 
“precipitation hardening”:
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6.2.6    Overview:  alloy processing for strength
• many processes for making metal components (often multi-stage) 
• alloy composition & process route determine microstructure, and thus σy

SHAPED 
CASTING

INGOT 
CASTING

DEFORMATION 
PROCESSING

(rolling, forging,
extrusion)

HEAT  TREATMENT
(“age harden”,

“quench & temper”)

SURFACE 
ENGINEERING

JOINING
(welding)

SHAPED 
CASTING

INGOT 
CASTING

DEFORMATION 
PROCESSING

(rolling, forging,
extrusion)

HEAT  TREATMENT
(“age harden”,

“quench & temper”)

SURFACE 
ENGINEERING

JOINING
(welding)

PRIMARY
PROCESSES

SECONDARY
PROCESSES

CAST                              WROUGHT

• fix composition (solute)
• form initial grain size

• precipitation hardening
• annealing (reduce ρd,

modify grain size)

• harden surface

• heat alters microstructure
and properties – may lead  
to failure

• work hardening (increase ρd)

 

Examples of alloys, applications and hardening mechanisms 
Alloy Typical uses Work 

hardening
Solid solution 
hardening

Precipitation 
hardening

Pure Al Foil XXX

Pure Cu Wire XXX

Cast Al, Mg Automotive parts XXX X

Bronze (Cu-Sn), 
Brass (Cu-Zn)

X XXX X

Non-heat-treatable 
wrought Al 

Ships, cans, 
structures

XXX XXX

Heat-treatable 
wrought Al

Aircraft, structures X X XXX

Low carbon steels Car bodies, ships, 
structures, cans

XXX XXX

Low alloy steels Automotive parts, 
tools

X X XXX

Stainless steels Cutlery, pressure 
vessels

XXX XXX

Cast Ni alloys Jet engine turbines XXX XXX

XXX: routinely used; X: sometimes used
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6.3   Failure of Polymers
Polymer strength is determined by:

• molecular architecture and bonding 
• the ability of the chain molecules to unravel and slide 

(no real equivalent to the dislocation)
• temperature, relative to the glass transition, and the strain-rate

Selected σ−ε curves 
for polymers, at room 
temperature (from 
Materials Databook).

 
St

re
ss

 σ

Strain ε
0          0.1         0.2          0.3         0.4 0.5   

Linear elastic

Brittle fracture

Flaws
Amorphous Thermoplastics

(1)  T < 0.8 Tg:  elastic-brittle

• chain sliding limited

• brittle fracture from inherent 
flaws in the material

• little or no ductility

e.g.  PMMA (tension)

 
(2)  0.8 Tg < T  < 1.2 Tg:  elastic-plastic

• chain mobility increases around Tg as van der Waals bonds melt
• yielding takes place by crazing, shear yielding or cold drawing.

Crazing:  
Microcracks open in tension, bridged by stiff fibres of material with aligned 
molecules, preventing immediate fracture.

Crazing starts

St
re

ss
 σ

Strain ε
0          0.1         0.2          0.3         0.4 0.5   

Fracture

Linear elastic

e.g.  PMMA (compression)
polycarbonate (tension/compression)  
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Shear yielding:
Shear bands form, and are stabilised by alignment of molecules; multiple 
bands form, giving greater ductility.

St
re

ss
 σ

Strain ε
0          0.1         0.2          0.3         0.4 0.5   

Linear elastic

Shear bands 
nucleate

 
Cold drawing
Polymers which do not craze can often be cold drawn.  
Necking occurs, but the neck is stable:  the molecules align in the neck and 
strengthen it, so the neck spreads along the specimen.

St
re

ss
 σ

Strain ε
0          0.2         0.4   

Linear elastic

2.6       2.8 3.0   

Fracture

Yield

Drawing

e.g. nylon, PET, PE, PP  

Effect of crystallinity and cross-linking

Semi-crystalline thermoplastics:
• strength follows a similar 

pattern to Young’s modulus

• above Tg crystalline regions 
resist deformation: strength 
increases with crystallinity

σf

100 
MPa

1 MPa

Tg

TEMPERATURE
Tm

σf

100 
MPa

1 MPa

Tg

TEMPERATURE
Tm

high 
crystallinity

amorphous

 
Elastomers:
• elastic-brittle below Tg, but very large elastic strains to failure above Tg

• fail catastrophically with little or no ductility: elastic strain is recovered
• it is confusing (but strictly true) that the elongation to failure is zero  
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σf

100 
MPa

1 MPa

Tg

TEMPERATURE

σf

100 
MPa

1 MPa

Tg

TEMPERATURE

σf

100 
MPa

1 MPa

Tg

TEMPERATURE

high cross-
linking

amorphous

Thermosets:
• also follow the pattern of 

Young’s modulus

• little effect of Tg: slow fall in
strength until the material 
decomposes

• above Tg limited shear 
yielding may occur 
(desirable in epoxy resins 
used as the matrix in 
fibre composites)

 
 

6.4   Summary:  Length scales of materials and microstructures

 
Crystalline materials Polymers
(Metals, Ceramics) Composites

The figure summarises the 
microstructural features that 
underpin the structural (and 
some functional) properties 
of materials in the IA course.
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7.   Strength-limited Component Design
7.1   Selection of light, strong materials
7.2   Case studies in strength-limited design
7.3   Effect of shape on material selection for lightweight design
7.4   Material selection with multiple constraints

Section 7 covers Examples Paper 4, Q.1-7
 

 

7.  Strength-limited Component Design

Selection of materials was introduced for stiffness-limited design, at 
minimum weight or cost.  
Many structural components are also strength-limited: this can be analysed 
following the same methodology: 

(1) identify objective (e.g. minimum mass or cost)
(2) identify functional constraint (i.e. must not fail:  σmax < σf )
(3) examine geometrical constraints (fixed dimensions, free variables)

7.1   Selection of light, strong materials

Area A 

F                                                     F

Length L

Example:  Light, strong tensile tie

A tensile tie of specified length L
is required to carry a load F, 
without failure. 
The tie has a uniform prismatic 
cross-section, but its area A may 
be varied.  
Step 1:  Objective:  minimum mass

The mass is minimised by maximising the performance index:

Step 2:  Functional constraint:  must not fail,  σmax < σf

Step 3:  Geometric constraint:  fixed L, free variable A 

Hence strength constraint becomes:

Eliminate the free variable  A  in the objective equation:

Mass m =

This is the specific strength.  As with E/ρ, it is commonly used to compare 
materials, but is not always the optimum combination.

For minimum material cost, the performance index is modified as before:  
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Light, strong components in bending
Shaping the cross-section improves stiffness in bending, and also reduces 
the maximum stress generated by a given bending moment (IA Structures).
The effect of section shape on material selection is considered later.

To investigate the effect of strength-limited design for bending, as opposed to 
tension, consider material selection for a light, strong panel.

Example:  Light, strong panel in bending

- specified span L, width B
- carry load W in 3-point 

bending, without failure
- rectangular cross-section,

depth D may be varied

Load, W

Length, L

Width, B

Depth, D

 

Following the same procedure as before:
Objective:  minimum mass
Functional constraint:  Set max. stress = failure stress:  

(where I = BD3/12)
Geometric constraint:  length L, width B fixed;  free variable  D

I
M

y
=

σ

max

max

Full analysis in Examples Paper 4 – resulting performance index is:
 

Material selection for minimum mass
(1)  On Strength – Density property chart:
Take logs as before, and re-arrange into form                      : 

=  constant:  

=  constant:  

cxmy +=

(2)  Apply secondary constraints (as before):
Avoid brittle materials (ceramics, glass)
Upper limit on cost/kg
Environmental resistance requirements
Manufacturing limits

(σf /ρ)

(σf
1/2/ρ)

Size limits – e.g. in tension: A σf =  constant:  
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Panel (bending)

(σf /ρ) = constant

(σf
1/2/ρ) = constant

Tie (tension)

Material selection 
using these 
performance 
indices: see 
Examples Paper 4.

 

7.2   Case studies in strength-limited design
(1)  Materials for springs
Maximum elastic stored energy per unit volume was shown earlier: 

Property chart in Materials Databook, or in CES 
(Examples Paper 4).

Take care to:
(a) apply correct slope for index
(b) move line in correct direction 

to optimise the selection.YO
U

N
G

’S
  M

O
D

U
LU

S 
   

  

STRENGTH  

YO
U

N
G

’S
  M

O
D

U
LU

S 
   

  

STRENGTH  

σf
2 /E = 

constant
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(2) Failure under self-weight: suspended cables 
A cable of uniform cross-sectional area A hangs vertically under its own 
weight.  
Find a performance index that maximises the length that can hang without 
failure.

Objective:  maximum length, L
Constraint:  σmax < σf

Free variable:  area, A
Area A

Length  L

σmax

Area A

Length  L

σmax

Max. stress, σmax = weight/area =

Hence length at failure = 

For longest cable at failure – maximise
Notes:
• for a cable of given length, the analysis sets a lower limit on (σf /ρ)
• cables suspended across a span with a shallow dip (as in IA Structures) 

may be analysed in the same way  
 

7.3  Effect of shape on material selection for lightweight design
Section shape is used to improve the efficiency of components and structures 
loaded in bending, e.g. I-beams:

(The same applies in torsion – twisting – e.g. hollow tubes).

To include shape in material selection, we need to: 
- quantify the efficiency of section shape
- consider both stiffness and strength  

Shape efficiency in bending:  stiffness
Bending stiffness is governed by the 
flexural rigidity, EI (cf. IA Structures):

3
1
L

IECWS,Stiffness =
δ

=

where I  =  second moment of area

∫= dAyI 2

and C1 depends on the loading geometry.
 

 23 



Note that:
- stiffness, S  ∝ second moment of area, I
- mass (per unit length), m/L  ∝ area, A

Shaping a section may be considered to improve efficiency in two ways:

(i)  increased stiffness (I), 
at constant mass (A)

(ii)  reduced mass (A), 
at constant stiffness (I)

 
Consider case (i): constant area (and mass/length): 

Define shape factor, for stiffness in bending, Φe =

A simple reference shape is a solid square section:

Area, A =            Second moment, Io = 

Hence shape factor for elastic bending stiffness:

(cf. a dimensionless group)

N.B. There are physical limits to the magnitude of the shape factor:
this leads to a maximum shape factor for each material (see below).  

Case (ii) is more relevant to material selection: minimum mass for a given 
stiffness.
Recall how to derive a performance index for minimum mass, in bending:  

Objective:  minimum mass,  m = ρ L A

Geometric constraints:  L fixed;  shape and area now free variables

Functional constraint:  bending stiffness 3
1
L

IECWS =
δ

=
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The stiffness constraint is:   (W/δ) L3 =  EI  =  constant
C1

Substituting for I, using the shape factor, Φe :      (W/δ) L3 =  E Φe A2 

C1 12
Hence area  A  ∝ 1/(E Φe)1/2

Substituting into objective equation:  mass, m  ∝ ρ .
(E Φe)1/2

Hence for minimum mass, maximise performance index:  

For the same stiffness, shaping a section reduces the mass (relative to a 
solid square section)  by a factor of 1/(Φe)1/2.

Maximum shape factor:  stiffness
The maximum shape factor depends on the physical limits on section 
thickness due to:

- the capabilities of manufacturing processes
- buckling failure of thin-walled sections  

Key point: different materials can be shaped to a different extent.

Material Typical maximum 
shape factor,

Φe

Typical mass ratio 
by shaping,

1/(Φe)1/2

Steels 64 1/8
Al alloys 49 1/7

Fibre Composites 36 1/6
Wood 9 1/3

For constant Φe , the shape is fixed:

In this case the performance index becomes:  E1/2

ρ

i.e. as area varies, the dimensions 
remain in constant proportion  

Numerical values for performance index, with and without shape: 

Material Index with fixed
shape,
E1/2/ρ

Index including 
max. shape factor,

(E Φe)1/2/ρ
Steels 1.86 14.9

Al alloys 3.10 21.7
CFRP 6.25 37.5
Wood 4.84 14.5

Notes:
- Composites lose some of their performance advantage over metals
- Wood falls behind in applications which can exploit shape  
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Bending strength is governed by the maximum 
moment, M,  and the corresponding maximum 
stress, σ (cf. IA Structures):

I
M

ymax
max =

σ where I  =  second 
moment of area

fef
max

f Z
y

IM σ=σ







=

where  Ze is the elastic section modulus.

Shape factor for bending strength
Similar arguments apply to quantify the effect of shape on strength.

Failure moment:

 
Define shape factor, for strength in bending, Φf =

Using the same reference shape of a solid square section:

(derivations on Examples Paper 4).

For minimum mass, maximise performance index:  

Notes:
- for the same strength, shaping reduces the mass (relative to a solid square 

section)  by a  factor of 1/(Φf)2/3.
- for constant Φf (fixed shape), the index becomes  σ2/3/ρ.  

Maximum shape factor: strength
The same physical limits on section thickness determine the maximum shape 
factor for strength, for each material class:

Material Typical maximum 
shape factor,

Φf

Typical mass ratio 
by shaping,

1/(Φf)2/3

Steels 13 0.18
Al alloys 10 0.22

Fibre Composites 9 0.23
Wood 3 0.48

Notes:
- Shaping has a smaller influence on strength than on stiffness 

(because increasing  I  is partly achieved by increasing  ymax)
- Metals again catch up a little with composites; wood falls behind.
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Summary: solving problems with shape

The differences in shape factor between materials are of comparable 
magnitude to the differences in modulus and strength: 

- shape is significant in material selection for bending applications.
Hence if area and shape can both be varied:

- either, use performance indices including shape factor
- or, use performance indices without shape, but comment on likely effect

of shape (metals > composites > wood)  

Case study: Plastic for lightweight bicycles ?
Bike frames are limited by both stiffness and strength, and may be optimised 
for low mass or low cost, depending on the market.  
Full analysis of problems with more than one functional constraint are 
discussed below.  
A preliminary analysis may be conducted to consider the question:  
would a plastic bicycle be lightweight?

 

• recall the relevant performance indices 
to maximise for minimum mass are:

for given stiffness,              to avoid failure
ρ

2/1E
ρ

σ 3/2
f

Plot these indices against one another in CES.

Assume the following:
• frame loading is dominated by bending
• shape is fixed (e.g. tubes of given 
radius:thickness ratio), size may vary

Bending, Compression

 

Load from road

Rider 
weight

Bending 
from braking 
or crashing

Bending, Compression

 

Load from road

Rider 
weight

Bending 
from braking 
or crashing
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σf
2/3 /ρ

E1/2 /ρ

Notes:
• strong competition between Al, Mg, Ti alloys, Al-SiC and GFRP
• steels do not perform well for low weight;  CFRP is outstanding
• polymers cannot compete, particularly on stiffness
• wood performs well, but cannot in practice be made into thin-walled tubes 

 
 

7.4   Material selection with multiple constraints
In earlier examples of lightweight design (with fixed shape):

- objective:  minimum mass
either, stiffness-limited  → functional constraint:  given stiffness

or, strength-limited  → functional constraint :  avoid failure

Performance index analysis 
(e.g. lightweight cantilever in bending):

- assume solid circular section, radius R
- fixed length L, specified end load F
and allowable tip deflection δ

- OR, must not fail

F 

δ
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








δπ
πρ=δ E

LFLm

Objective:  minimum mass,  m = ρ L π R2

Stiffness constraint:

3

4

3 4
33

L
RE

L
IEF π

==
δ

Eliminating R: 







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
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4

/

f

LFLm 










σπ
πρ=σ

Strength constraint:

4
4

R
LF

I
LF

R
f

π
==

σ

Eliminating R: 

( ) ( ) 













σ

ρ
π=σ 32

32315 4 /
f

//
FLm

If one constraint  (stiffness  or strength):
- minimise mass → maximise appropriate index  (E1/2/ρ or  σf

2/3/ρ)
- do not need values for  F, L, δ

If both constraints apply:
- limiting mass is the higher  of mδ and  mσ (to guarantee both are met)
- must evaluate actual masses  ⇒ need values for  F, L, δ
- lightest material:  the lowest of the limiting mass values 

 

Example:  cantilever with stiffness and strength constraint
Fixed length L = 0.5m,  end load F = 500N
Allowable deflection  δ =  50mm;  must not fail (max. stress < σf)

Result:    CFRP is the lightest material

E

GPa

ρ
kg/m3

σf

MPa

mδ

kg

mσ

kg

Design-
limiting 

constraint
CFRP 120 1500 600 0.16 0.15 Stiffness
Ti alloy 120 4500 700 0.47 0.42 Stiffness
Al alloy 70 2700 400 0.37 0.36 Stiffness

Alloy steel 210 7800 600 0.62 0.80 Strength
Nylon 3 1100 100 0.73 0.37 Stiffness
Wood 12 600 70 0.20 0.26 Strength

Notes:    
- in this example, CFRP  was the lightest material for both constraints
- this is not always the case: the best material may not in fact be the

lightest on either criterion
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Further refinements
Minimum cost

- same analysis, with each limiting mass × cost/kg to convert to cost
- same design-limiting criterion will apply for each material

Size limits
- given limiting mass for each material, back-substitute into objective

equation to find actual size required (e.g. radius R in example)
Secondary constraints

- as in earlier examples: comment on toughness, corrosion, manufacturing,
joining etc.

m
kg

Cm

£/kg
Cost

£
CFRP 0.16 60 9.6
Ti alloy 0.47 40 18.8
Al alloy 0.37 2 0.74

Alloy steel 0.80 1 0.80
Nylon 0.73 4 2.92
Wood 0.26 2 0.52

Result: 
Wood is the cheapest material
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